
www.manaraa.com

www.manaraa.com

c A Software
Engineering Approach

www.manaraa.com

Springer
New York
Berlin
Heidelberg
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

www.manaraa.com

Peter A. Darnell Philip E. Margolis

A Software
Engineering Approach

Third Edition

With 64 Illustrations

i Springer

www.manaraa.com

Additional material to this book can be downloaded from http://extras.springer.com

c A Software
Engineering Approach

Peter A. Darnell
Visual Solutions
P.O. Box 1414
Westford, MA 01886
USA

Philip E. Margolis
13 Hale Street
Rockport, MA 01966
USA

Library of Congress Cataloging-Publication Data
Darnell, Peter A.

C, a software engineering approachlPeter A. Darnell, Philip E.
Margolis. - 3rd ed.

p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-387-94675-7 e-ISBN-13: 978-1-4612-4020-4
DOl: 10.1 007/978-1-4612-4020-4
1. C (Computer program language) 2. Software engineering.

1. Margolis, Philip E. II. Title.
QA76.758.D37 1996
005.13'3-dc20 96-808

Printed on acid-free paper.

Additional material to this book can be downloaded from http://extras.springer.com
© 1996, 1991, 1988 Springer-Verlag New York, Inc.
Reprint of the original edition 1996
All rights reserved. 1bis work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue,
New York, NY 10010, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication,
even if the former are not especially identified, is not to be taken as a sign that such names,
as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used
freely by anyone.

Production managed by Natalie Johnson; manufacturing supervised by Jeffrey Taub.
Camera-ready copy prepared from the author's Microsoft Word illes.

987654

SPIN 10842658

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+ Business Media GmbH

www.manaraa.com

In memory of Roo Darnell, friend and brother,
and one of the most promising young software
engineers we have ever known.

www.manaraa.com

Preface to the
Third Edition

Over the last few years, a number of developments have changed the C
programming world. Perhaps the most important development has been
the universal acceptance of the ANSI C Standard.

When we wrote the first edition, the ANSI Standard had not yet been
ratified and many of its features were considered cutting-edge. We felt
obliged, therefore, to describe the K&R Standard in the main text and to

relegate ANSI features to shaded boxes. Now that nearly all C compilers
are ANSI-conforming, we have taken this opportunity to integrate the
ANSI features into the main text of the book and to update all the exam­
ples.

We have also made some organizational changes, primarily to intro­
duce key software engineering principles earlier in the book. Finally, we
have included a diskette with this edition that contains the source code
and an executable version of the C interpreters whose development we
describe in Chapter 13. The diskette also contains the source code for all
examples in the book.

The programming world continues to change at a rapid pace, with new
languages, paradigms, and methodologies appearing annually. We are
confident, nevertheless, that the C language, and the software engineering
principles espoused in the book, will remain relevant for many years to
come.

www.manaraa.com

Preface to the First
and Second Editions

This book describes the C programming language and software engineer­
ing principles of program construction. The book is intended primarily as
a textbook for beginning and intermediate C programmers. It does not
assume previous knowledge of C, nor of any high-level language, though it
does assume that the reader has some familiarity with computers. While
not essential, knowledge of another programming language will certainly
help in mastering C.

Although the subject matter of this book is the C language, the empha­
sis is on software engineering-making programs readable, maintainable,
portable, and efficient. One of our main goals is to impress upon readers
that there is a huge difference between programs that merely work, and
programs that are well engineered, just as there is a huge difference be­
tween a log thrown over a river and a well-engineered bridge.

The book is organized linearly so that each chapter builds on informa­
tion provided in the previous chapters. Consequently, the book will be
most effective if chapters are read sequentially. Readers with some experi­
ence in C, however, may find it more useful to consult the table of con­
tents and index to find sections of particular interest.

Each chapter is autonomous inasmuch as it covers a single,
well-defined area of the C language, such as scalar data types or control
flow. Moreover, the chapters themselves are organized linearly, so that
each section uses information provided in earlier sections. Again, experi­
enced C programmers may want to skim introductory sections.

Although this book covers all C features, it makes no claim to being a
reference manual. The organization and pace are designed for those

www.manaraa.com

x Preface to the First and Second Editions

learning the language rather than those who already know the language. If
you plan to do extensive programming in C, we recommend that you sup­
plement our book with C: A Reference Manual, by Harbison and Steele.

This book describes all features of the C language defined by American
National Standards Institute (ANSI) sta,ndard. Where the two versions
differ, we highlight the difference either by explicitly describing each ver­
sion in the text or by describing the ANSI feature in a shaded box. A list of
differences between the two standards appears in Appendix E. For more
information about the ANSI standard, you should read the official specifi­
cation, which you can obtain by writing to:

American National Standards Institute
1430 Broadway
New York, NY 10018

In addition to using shaded boxes to describe ANSI extensions, we also
use boxes to highlight common errors made by C programmers. These
"Bug Alerts" are intended as buoys to mark places where we and others
have run aground.

The examples in this book have all been tested on three machines: A
PC-compatible Zenith Z-151 running the Microsoft Version 3.0 C com­
piler, an Apollo DN3000 running the DOMAIN C compiler (Version
4.78), and a Sun Microsystems 3150 computer running Version 3.1 of the
Sun compiler. Whenever possible, we have tried to use realistic examples
gleaned from our own experiences. Occasionally we refer to "our ma­
chine," which means any of these three computers. The most significant
aspect of "our machine" is that it allocates four bytes for ints.

Appendix A describes all of the runtime library functions defined in the
ANSI standard. Many of these functions are derived from UNIX functions
and are present in current C runtime libraries. Be careful, though, because
some ANSI functions behave differently from identically-named functions
in older libraries.

Appendix B lists certain ranges that an ANSI-conforming compiler
must support. This includes, for example, the range of values that must be
representable in a floating-point number.

Appendix C lists the major differences between the ANSI Standard and
the K&R standard. Each entry in this list contains a reference to the sec­
tion in the book where the difference is described. Note that this list is not
exhaustive.

Appendix D lists ~ll names reserved by the ANSI standard. This in­
cludes keywords, library function names, and type definitions used by the
library. You should avoid declaring variables that conflict with these
names.

Appendix E lists ASCII codes.

www.manaraa.com

Preface to the First and Second Editions xi

Acknowledgments

First and foremost, we wish to acknowledge our debt to the authors of the
two most influential books about C: Samuel Harbison, Brian Kernighan,
Dennis Ritchie, and Guy Steele.

In addition to the books by these authors, we also leaned heavily on
the Draft Proposed ANSI Standard, and we thank all of the members of
the ANSI X3J11 Subcommittee for their efforts in creating this document.

Many people reviewed various parts of this book at various stages. We
are indebted to all of them, particularly David Boundy, David Boyce, Gary
Bray, Clem Cole, Karen Darnell, Norman Garfinkle, John Humphrys, Ben
Kingsbury, Diane Margolis, Doug McGlathery, Beth O'Connell, John Pey­
ton, Bill PI auger, Barry Rosenberg, Jim Van Sciver, Kincade Webb, Bob
Weir, and John Weiss. We are also indebted to the software development
team at Dynatech Data Systems, especially Elizabeth Stark and Jonathan
Edney. Special thanks go to Chuck Connell, Sam Harbison, and Tom Pen­
nello, who read the manuscript in its entirety and offered numerous in­
valuable suggestions. We would also like to thank Kathy Ford for her
assistance in preparing the artwork, and Andrea Morris for her expert
editorial advice. Naturally, we accept responsibility for any flaws that re­
mam.

Finally we would like to thank Apollo Computer Inc. and Stellar Com­
puter Inc. for providing the working environments in which to produce
this book. The entire book was formatted using the Interleaf Version 3.0
electronic publishing system running on an Apollo DN3000 workstation.

Suggested Reading

We have found the following books extremely helpful in mastering C and
in absorbing general software engineering principles.

• Aho, Alfred V., and Jeffrey P. Ullman. Principles of Compiler De­
sign. Addison-Wesley, 1972.

• Brooks, Frederick P., Jr. The Mythical Man Month: Essays on
Software Engineeri/:zg. Addison-Wesley, 1974.

• Date, C. J. An Introduction to Database Systems. 4th ed. Addi­
son-Wesley, 1986.

• Foley, J. D., and A. Van Dam. Fundamentals of Computer Graph­
ics. Addison-Wesley, 1980.

• Harbison, Samuel P., and Guy L. Steele Jr. C: A Reference Manual.
2d ed. Prentice Hall, 1984.

• Kernighan, Brian W., and P. J. Plauger. Software Tools. Addi­
son-Wesley, 1976.

www.manaraa.com

xii Preface to the First and Second Editions

• Kernighan, Brian W., and P. J. Plauger. Elements of Programming
Style. McGraw-Hill, 1978.

• Kernighan, Brian W., and Dennis M. Ritchie. The C Programming
Language. Prentice-Hall, 1978.

• Knuth, Donald E. The Art of Computer Programming. Addi­
son-Wesley, 1973.

• Shore, John. The Sacher Torte Algorithm. Penguin Books, 1986.

www.manaraa.com

Contents
Preface to the Third Edition .. vii

Preface to the First and Second Editions ix

F· . 19ures ... XXI

Tables .. xxv

1: Introduction to Programming ... 1

1.1 High-Level Programming Languages 3

1.2 History of c ... 5

1.3 ANSI and ISO Standards ... 6

1.4 Nature of C ... 8

2: Introduction to Software Engineering 9

2.1 Introduction ... 10

2.2 Stages of Software Production ... 10

2.3 Product Specification ... 12

2.4 Architectural Design .. 13

2.5 Project Planning ... 17

2.6 Detailed Design .. 21

www.manaraa.com

xiv Contents

2.7 Coding ... 24

2.8 Debugging ... 25

2.9 Testing ... 27

2.10 Maintenance .. 28

2.11 The Bridge Metaphor .. 29

3: C Essentials .. 31

3.1 Program Development ... 31

3.2 Functions ... 35

3.3 Variables and Constants .. 39

3.4 Names ... 41

3.5 Expressions .. 43

3.6 Formatting Source Files ... 44

3.7 The main() Function .. 46

3.8 The printf() Function ... 50

3.9 The scanf() Function .. 52

3.10 The Preprocessor ... 52

3.11 Exercises .. 55

4: Scalar Data Types ... 57

4.1 Declarations ... 58

4.2 Different Kinds of Integer Constants 65

4.3 Floating-Point Types .. 69

4.4 Scientific Notation ... 70

4.5 Initialization .. 71

4.6 Mixing Types ... 72

4.7 Explicit Conversions-Casts .. 81

4.8 Enumeration Types .. 81

4.9 The void Data Type ... 83

4.10 Typedefs .. 84

www.manaraa.com

Contents xv

4.i 1 Finding the Address of an Object 85

4.12 Introduction to Pointers ... 86

4.13 Exercises .. 90

5: Control Flow .. 92

5.1 Conditional Branching ... 92

5.2 The switch Statement ... 100

5.3 Looping ... 107

5.4 Nested Loops ... 116

5.5 A Simple Calculator Program .. 118

5.6 The break and continue Statements 120

5.7 The goto Statement .. 121

5.8 Infinite Loops .. 122

5.9 Exercises .. 123

6: Operators and Expressions .. 126

6.1 Precedence and Associativity ... 128

6.2 Unary Plus and Minus Operators 132

6.3 Binary Arithmetic Operators ... 133

6.4 Arithmetic Assignment Operators 136

6.5 Increment and Decrement Operators 139

6.6 Comma Operator .. 143

6.7 Relational Operators ... 145

6.8 Logical Operators .. 146

6.9 Bit-Manipulation Operators .. 150

6.10 Bitwise Assignment Operators ... 157

6.11 Cast Operator .. 158

6.12 sizeof Operator .. 158

6.13 Conditional Operator (?:) .. 160

www.manaraa.com

xvi Contents

6.14 Memory Operators .. 161

6.15 Exercises .. 161

7: Arrays and Pointers ... 164

7.1 Declaring an Array .. 165

7.2 How Arrays Are Stored in Memory 167

7.3 Initializing Arrays .. 168

7.4 Example: Encryption and Decryption 169

7.5 Pointer Arithmetic ... 171

7.6 Passing Pointers as Function Arguments 173

7.7 Accessing Array Elements Through Pointers 174

7.8 Passing Arrays as Function Arguments 177

7.9 Sorting Algorithms .. 179

7.10 Strings .. 182

7.11 Multidimensional Arrays ... 194

7.12 Arrays of Pointers .. 202

7.13 Pointers to Pointers .. 205

7.14 Exercises .. 209

8: Storage Classes ... 212

8.1 Fixed vs. Automatic Duration .. 213

8.2 Scope ... 217

8.3 Global Variables .. 221

8.4 The register Specifier ... 225

8.5 The const Storage-Class Modifier 226

8.6 The volatile Storage-Class Modifier 228

8.7 Summary of Storage Classes .. 229

8.8 Dynamic Memory Allocation .. 231

8.9 Exercises .. 234

www.manaraa.com

Contents xvii

9: Structures and Unions ... 236
9.1 Structures ... 236

9.2 Linked Lists ... 256

9.3 Unions ... 262

9.4 enum Declarations ... 267

9.5 Exercises .. 269

10: Functions .. 2 70

10.1 Passing Arguments ... 270

10.2 Declarations and Calls ... 272

10.3 Pointers to Functions ... 284

10.4 Recursion ... 293

10.5 The main() Function .. 296

10.6 Complex Declarations ... 297

10.7 Exercises .. 301

11: The C Preprocessor .. 304

11.1 Macro Substitution .. 305

11.2 Conditional Compilation ... 316

11.3 Include Facility .. 320

11.4 Line Control .. 321

11.5 Exercises .. 323

12: Input and Output .. 326

12.1 Streams .. 327

12.2 Buffering .. 329

12.3 The <stdio. h> Header File .. 330

12.4 Opening and Closing a File .. 332

12.5 Reading and Writing Data ... 335

12.6 Selecting an 110 Method .. 341

12.7 Unbuffered 110 .. 343

www.manaraa.com

xviii Contents

12.8 Random Access .. 344

12.9 Exercises .. 353

13: Software Engineering-A Case Study 355

13.1 Style Review .. 356

13.2 Product Specification ... 357

13.3 Architectural Design .. 361

13.4 Project Planning ... 363

13.5 Detailed Design .. 365

13.6 Software Tools for Software Production 369

13.7 Documentation .. 372

13.8 Exercises .. 373

APPENDICES

A: The ANSI Runtime Library ... 376
A.l Function Names .. 377

A.2 Header Files .. 377

A.3 Synopses .. 377

A.4 Functions vs. Macros .. 379

A.5 Error Handling .. 380

A.6 Diagnostics .. 380

A.7 Character Handling .. 381

A.8 Setting Locale Parameters ... 383

A.9 Mathematics ... 387

A.I0 Nonlocal Jumps .. 391

A.ll Signal Handling .. 393

A.12 Variable Argument Lists ... 395

A.13 110 Functions .. 397

A.14 General Utilities .. 422

www.manaraa.com

Contents xix

A.15 String-Handling Functions .. 432

A.16 Multibyte Character Functions 439

A.17 Date and Time Functions .. 441

B: Implementation Limits .. 447

B.1 Translation Limits ... 447

B.2 Numerical Limits ... 448

c: Differences Between the ANSI and K&R Standards452

C.1 Source Translation Differences .. 452

C.2 Data Type Differences ... 454

C.3 Statement Differences .. 456

CA Expression Differences .. 456

C.5 Storage Class and Initialization Differences 458

C.6 Preprocessor Differences ... 459

D: Reserved Names ... 462

E: ASCII Codes ... 473

Index .. 476

www.manaraa.com

Figures
Figure 1-1: Computer languages lie along a continuum 2

Figure 2-1: Stages of Software Development .. 11

Figure 2-2: Software engineering is based on a hierarchy of
programming components .. 16

Figure 2-3: Typical software development curve 20

Figure 3-1: Stages of program development .. 32

Figure 3-2: Source files must be compiled to produce object files.
The separate object files are then linked together to form the
executable file ... 33

Figure 3-3: Elements of a function ... 37

Figure 3-4: Anatomy of the square() function 38

Figure 3-5: Memory after j=5+10 ... 40

Figure 3-6: Syntax of an assignment statement 44

Figure 4-1: Hierarchy of C data types ... 58

Figure 4-2: Hierarchy of C scalar data types ... 74

Figure 4-3: Dereferencing a pointer variable ... 88

Figure 5-1: Syntax of an if ... else statement ... 93

Figure 5-2: Logic of nested if statement .. 100

Figure 5-3: Braces ensure correct control flow 103

Figure 5-4: Syntax of a switch statement .. 104

www.manaraa.com

xxii Figures

Figure 5-5: Syntax of a while statement .. 107

Figure 5-6: Flow control of a while statement 108

Figure 5-7: Syntax of a do ... while statement ... 110

Figure 5-8: Syntax of a for statement .. 111

Figure 6-1: Evaluation of an expression using parentheses 130

Figure 6-2: Representation of an expression as an inverted tree 131

Figure 7-1: Syntax of an array declaration .. 165

Figure 7-2: Storage of an array ... 167

Figure 7-3: Initialization of arrays .. 169

Figure 7-4: Because p points to a long int, four bytes are set to
zero .. 175

Figure 7-5: Storage of a string ... 183

Figure 7-6: Storage of a multidimensional array 197

Figure 7-7: Array of pointers .. 203

Figure 7-8: Storage of an array of pointers to strings 204

Figure 7-9: A pointer to a pointer ... 206

Figure 8-1: Hierarchy of active regions (scopes) 218

Figure 8-2: Dynamic memory allocation ... 233

Figure 9-1: Memory storage of the vs structure 238

Figure 9-2: Structure allocation without alignment restrictions 246

Figure 9-3: Structure allocation with alignment restrictions 246

Figure 9-4: Syntax of bit field declarations ... 248

Figure 9-5: Storage of three consecutive bit fields 249

Figure 9-6: Alternative storage of three consecutive bit fields 249

Figure 9-7: Storage of two consecutive bit fields straddling int
boundaries .. 250

Figure 9-8: Storage of the DATE structure with bit fields 251

Figure 9-9: Alternative storage of the DATE structure with bit
fields ... 251

Figure 9-10: A singly linked list .. 257

Figure 9-11: Linked-list insertion .. 260

Figure 9-12: Linked-list deletion ... 260

www.manaraa.com

Figures xxiii

Figure 9-13: Example of union memory storage 263

Figure 9-14: Storage in example union after assignment 263

Figure 10-1: Pass by reference vs. pass by value 272

Figure 10-2: Syntax of a prototype form function declaration 273

Figure 10-3: Traditional syntax of a function definition 274

Figure 10-4: Syntax of a return statement ... 277

Figure 10-5: Syntax of a function allusion .. 281

Figure 10-6: Syntax of a function call. .. 284

Figure 10-7: Call trace of sumO function when argument is 5 295

Figure 11-1: Syntax of a function-like macro .. 306

Figure 11-2: Syntax of conditional compilation directives 316

Figure 11-3: Syntax of a #line directive .. 321

Figure 12-1: C programs access data in files through one-
dimensional arrays of characters called streams 327

Figure 13-1: Time lines and milestones for the cint project 364

Figure 13-2: Balanced binary tree implementation of a symbol
table ... 366

Figure 13-3: Unbalanced binary tree implementation of a symbol
table ... 367

Figure 13-4: Directory structure for C interpreter project
containing debug and edit subsystems .. 370

www.manaraa.com

Tables
Table 2-1: Examples of functions from the C runtime library 21

Table 3-1: Legal and Illegal Variable Names .. 41

Table 3-2: Reserved C Keywords .. 42

Table 3-3: Reserved c++ Keywords .. 42

Table 3-4: Do's and Don'ts of commenting .. 46

Table 4-1: Scalar Type Keywords ... 59

Table 4-2: Size and Range of Integer Types on Our Machine 62

Table 4-3: Integer Constants ... 66

Table 4-4: Types of Integer Constants .. 67

Table 4-5: C Escape Sequences ... 68

Table 4-6: Trigraph Sequences .. 69

Table 4-7: Legal and Illegal Floating-Point Constants 71

Table 5-1: Relational Operators ... 96

Table 5-2: Relational Expressions ... 97

Table 6-1: Precedence and Associativity of C Operators 129

Table 6-2: Unary Arithmetic Operators .. 132

Table 6-3: Binary Arithmetic Operators ... 133

Table 6-4: Examples of Expressions Using Arithmetic Operators 134

Table 6-5: Arithmetic Assignment Operators 136

www.manaraa.com

xxvi Tables

Table 6-6: Examples of Expressions Using Arithmetic Assignment
Operators ... 139

Table 6-7: The Increment and Decrement Operators 139

Table 6-8:Examples of Expressions Using the Increment and
Decrement Operators ... 143

Table 6-9: The Comma Operator ... 143

Table 6-10: The Relational Operators .. 145

Table 6-11: Examples of Expressions Using the Relational
Operators ..•.................................... 145

Table 6-12: The Logical Operators ... 146

Table 6-13: Truth table for && operator .. 147

Table 6-14: Truth table for II operator .. 148

Table 6-15: Truth table for! operator .. 148

Table 6-16: Examples of Expressions Using the Logical Operators 149

Table 6-17: The Bit-Manipulation Operators 150

Table 6-18: Examples Using the Shift Operators 151

Table 6-19: Shifting Negative Numbers .. 151

Table 6-20: Decimal, Hexadecimal, Binary, and Octal Versions of
the Integers 0 Through 15 .. 153

Table 6-21: The Bitwise AND Operator ... 153

Table 6-22: Examples Using the Bitwise Inclusive OR Operator 153

Table 6-23: Example Using the XOR Operator 154

Table 6-24: Example Using the Bitwise Complement Operator 153

Table 6-25: The Bitwise Assignment Operators 157

Table 6-26: The Cast Operator ... 158

Table 6-27: The sizeof Operator ... 158

Table 6-28: The Conditional Operator ... 160

Table 6-29: The Memory Operators ... 161

Table 7-1: String Functions in the Standard Library 195

Table 8-1: Semantics of Storage-Class Specifiers 230

Table 10-1: Legal and Illegal Declarations in C. 300

Table 12-1: (open() Text Modes .. 333

www.manaraa.com

Tables xxvii

Table 12-2: File and Stream Properties of fopen() Modes 335

Table 12-3: I/O to stdin and stdout 351

Table 12-4: Error-Handling Functions ... 352

Table 12-5: File Management Functions ... 353

Table 12-6: 110 to files .. 353

Table 13-1: Summary of Programming Style Issues 357

Table 13-2: List of Modules in the C Interpreter 363

Table A-I: Header Files for the Runtime Library 379

Table A-2: Character Testing Functions ... 383

Table A-3: [conv Structure .. 386

Table A-4: Trigonometric and Hyperbolic Functions 390

Table A-5: Signal-Handling Macros ... 395

Table A-6: The fopen() Modes .. 402

Table A-7: printf() Conversion Characters ... 409

Table A -8: printf() Flag Characters ... 411

Table A-9: scanf() Conversion Characters .. 419

Table A-I0: Format specifiers for the time functions 446

Table D-l: Reserved Names ... 464

www.manaraa.com

1
Introduction to

Programming

You cannot endow even the best machine with initiative.
Walter Lippmann, A Preface to Politics

Although computers are capable of performing complex and difficult op­
erations, they are inherently simple-minded and docile machines. They
must be told exactly what to do, and they must be instructed in a precise
and limited language that they can comprehend. These instructions are
known as software. The machinery that actually executes the instructions
is known as hardware.

At the hardware level, computers understand only simple commands,
such as "copy this number," "add these two numbers," and "compare
these two numbers." These modest commands constitute the computer's
instruction set and programs written using these instructions are said to be
written in the computer's machine language.

One of the surprising aspects of computer science is the rich array of
useful operations that can be performed by combining these simple in­
structions. Unfortunately, it is extremely tiresome to write programs in
machine language because even the simplest tasks require many instruc­
tions. Moreover, in most machine languages, everything-instructions,
data, variables-is represented by binary numbers. Binary numbers are
composed entirely of zeroes and ones (each digit is called a bit, short for

www.manaraa.com

2 1: Introduction to Programming

"binary digit"). These programs, consIstIng of a jumble of zeroes and
ones, are difficult to write, read, and maintain.

In the 1940s and 1950s, all programs were written in machine lan­
guage, or its close cousin, assembly language. Assembly language is a ma­
jor improvement over machine language, although it is only once removed
from the computer's instruction set. In assembly language, each instruction
is identified by a short name rather than a number, and variables can be
identified by names rather than numbers. Programs written in assembly
language require a special program, called an assembler, to translate as­
sembly language instructions into machine instructions. Today, programs
are written in assembly language only when execution speed is a high pri­
ority.

The vast majority of programs written today are written in languages
called high-level languages that were first developed in the 1950s and
1960s. High-level languages allow programmers to write programs in a
language more natural to them than the computer's restrictive language.

One can view programming languages as lying along a spectrum with
machine languages at one end and human languages, such as French and
English, at the other end (see Figure 1-1). High-level programming lan­
guages fall somewhere between these extremes, usually closer to the ma­
chine language. High-level languages allow programmers to deal with
complex objects without worrying about details of the particular com­
puter on which the program is running. Of course programming languages
differ from human languages since they are designed solely to manipulate
information. They are much more limited and precise than human lan­
guages.

- r-

III III
III (l,) (l,)

bIl bIl (l,)

<d <d bIl
:l <d

;-- :l - '-- :l -bIl bIl
c: c: bIl
<d <d c:

....JJ <d
....J

(l,) >-
til c: ::0

ffi i: E Fm i!!ii,
:l

u (l,)

L!J <d III

~ III «
'----- '---

Figure 1-1: Computer languages lie along a continuum, with machine languages at
one end and human languages at the other end.

www.manaraa.com

1.1 High-Level Programming Languages 3

1.1 High-Level Programming Languages

Every high-level language requires a compiler or interpreter to translate
instructions in the high-level programming language into low-level instruc­
tions that the computer can execute. The remainder of this section applies
only to compilers. We describe interpreters in Chapter 13.

A compiler is similar to an assembler, but much more complex. There
is a one-to-one correspondence between assembly language instructions
and machine instructions. In contrast, a single instruction in a high-level
language can produce many machine instructions.

The farther a programming language is from a machine language, the
more difficult it is for the compiler to perform its task. But languages that
are far removed from the computer architecture offer two main advan­
tages:

• High-level languages remove the programmer from the idiosyncra­
sies of each computer architecture.

• Programs written in high-level languages are easier to read and
maintain.

Once you have learned a high-level language, you need not be preoccu­
pied with how the compiler translates programs into a machine language.
As a result, programs you write for one computer can be executed on an­
other computer merely by recompiling them. This feature is known as
software portability. In Figure 1-2, for instance, a single program written
in a high-level language is translated into three machine language pro­
grams by three separate compilers.

Another advantage of high-level languages is readability. Their relative
closeness to human languages makes programs not only easier to write,
but easier to read as well. The operation of a well-written program in a
high-level language can be readily apparent to a reader because the sym­
bols and instructions resemble human symbols and instructions rather
than the computer's internal symbols and instructions. In contrast, even
the best-written assembly language programs must be closely analyzed to
construe their operation. For example, consider the simple C statement

a = b+c-2;

which assigns the value "b plus c minus 2" to a, where a, b, and care
variables.

In assembly language, this could be written:

LOAD b, %rO
LOAD c, %rl
ADD %rO, %rl
SUB &2, %rl
STORE %rl, a

Obviously, the C version is easier to read and understand.

www.manaraa.com

4

Compiler X

Machine language
program for
computer X

Program written in a
high-level language

CompilerY

Machine anguage
program for
computer X

1: Introduction to Programming

CompilerZ

Machine language
program for
computer X

Figure 1-2: The same program written in a high-level language can be compiled
into different machine-language programs to run on different types of computers.

Closely related to readability is maintainability. Because they are more
readable, programs written in high-level languages are much easier to
modify and debug.

Despite these advantages, there are prices to pay when using high-level
languages. The most important price that must be paid is reduced effi­
ciency. When a compiler translates programs into machine language, it
may not translate them into the most efficient machine code. Just as it is
possible to use different words to say the same thing, it is also possible to
use different machine instructions to write functionally equivalent pro­
grams. Some combinations of instructions execute faster than others. By
writing directly in the machine language, it is usually possible to select the
fastest version. By writing in a high-level language, the programmer has
little control over how a compiler translates code. The result, especially
when an unsophisticated compiler is used, can be inefficient code.

Nevertheless, high-level languages are superior to machine and assem­
bly languages in most instances. For one thing, sophisticated compilers can
perform tricks to gain efficiency that most assembly language program­
mers would never dream of. The main reason for the superiority of
high-level languages, however, is that most of the cost of software devel­
opment lies in maintenance, where readability and portability are crucial.

The issues raised here-portability, efficiency, and readability-are
central concepts that we will revisit throughout this book. Many of the
assumed advantages of high-level languages, such as portability and read­
ability, are realized only through careful programming. Likewise, the dis­
advantages, such as reduced efficiency, can be mitigated once the language
is well understood.

www.manaraa.com

1.2 History of C 5

1.2 History of C

The C language was first developed in 1972 by Dennis M. Ritchie at
AT&T Bell Labs as a systems programming language-that is, a language
to write operating systems and system utilities. Operating systems are the
programs that manage the computer's resources. Well-known examples of
operating systems include MS/DOS and OS/2 for IBM PC-compatible
computers, VMS for VAXes, and UNIX, which runs on a variety of com­
puters.

Ritchie's intent in designing C was to give programmers a convenient
means of accessing a machine's instruction set. This meant creating a lan­
guage that was high-level enough to make programs readable and port­
able, but simple enough to map easily onto the underlying machine.

C was so flexible, and enabled compilers to produce such efficient ma­
chine code, that in 1973, Ritchie and Ken Thompson rewrote most of the
UNIX operating system in C. Traditionally, operating systems were writ­
ten in assembly language because execution speed was critical and because
only assembly languages gave programmers the full control they needed to
access special memory locations. The coding of UNIX in C demonstrated
C's value as a systems programming language.

The main advantages of writing an operating system in a high-level
language are speed of implementation and maintainability. A fortuitous
side-effect, however, is that the operating system can be moved to other
computers by recompiling it on the target machines. This process is called
porting. UNIX was originally written for a DEC PDP-7 in a language
called B (C's predecessor). Later, UNIX was ported to a PDP-ll and re­
coded in C. Before long, UNIX was ported to other types of computers.
Every port required a new C compiler so the fortunes of C and UNIX were
tightly bound. For C, this was both good and bad. On the one hand, the
language spread more quickly than it might have on its own. On the other
hand, C was, in many people's minds, strictly a UNIX systems language. It
is only in recent years that C has come to be viewed as a more gen­
eral-purpose programming language.

Throughout most of its history, the only formal specification for the C
language was a document written by Ritchie entitled The C Reference
Manual. In 1977, Ritchie and Brian Kernighan expanded this document
into a full-length book called The C Programming Language (often re­
ferred to as the K&R standard). Though a useful reference guide for pro­
grammers, it was unsatisfactory for compiler builders because too many
details were omitted. Despite its shortcomings, it remained for years the
only C text and acquired the status of a de facto standard.

In the early days of C, the language was used primarily on UNIX sys­
tems. Even though there were different versions of UNIX available, the
versions of the C compiler maintained a large degree of uniformity. The

www.manaraa.com

6 1: Introduction to Programming

version of C running under UNIX is known as PCC (Portable C Com­
piler). Like the K&R standard, PCC also became a de facto standard.

With the emergence of personal computers (PCs) and the growing
popularity of C, however, the K&R and PCC standards were no longer
satisfactory. Suddenly, C compilers were being written to run on new ma­
chines and under different operating systems. It became difficult or impos­
sible to adhere to the original standards. Another problem was that C was
such a small language that compiler developers felt a strong temptation to

add their own favorite constructs. Before long, there were many variants
of C, each differing in little ways.

One of C's original strengths had been its portability, but over the
years it lost this advantage. Programs written for one compiler could not
be guaranteed to compile correctly on another computer. Eventually, the
American National Standards Institute (ANSI) formed a subcommittee to
define an official version of the C language.

1.3 ANSI and ISO Standards

The American National Standards Institute is the foremost standards or­
ganization in the United States. ANSI is divided into a number of commit­
tees that have responsibility for approving standards that cover a
particular technical area. The X3 Committee, chartered in 1961, is respon­
sible for Computer and Information Processing Standards.

In February 1983, James Brodie of Motorola Corporation applied to
the X3 Committee to draft a C standard. ANSI approved the application,
and in March the X3Jll Technical Committee of ANSI was formed.
X3J11 is composed of representatives from all the major C compiler de­
velopers as well as representatives from several companies that program
their applications in C. In the summer of 1983, the committee met for the
first time, and they have been meeting four times a year since then. The
final version of the C Standard, called X3.159-1089, was ratified as an
ANSI standard in 1989.

The ANSI standard for the C language is specified in a document enti­
tled American National Standard for Information Systems - Programming
Language C. In addition to this specification, there is a Rationale Docu­
ment, which clearly explains the goals of the X3J11 Committee:

The Committee's overall goal was to develop a clear, consistent,
and unambiguous Standard for the C programming language which
codifies the common, existing definition of C and which promotes the
portability of user programs across C language environments ...

The work of the Committee was in large part a balancing act. The
Committee has tried to improve portability while retaining the defini­
tion of certain features of C as machine-dependent. It attempted to in-

www.manaraa.com

1.3 ANSI and ISO Standards 7

corporate valuable new ideas without disrupting the basic structure
and fabric of the language. It tried to develop a clear and consistent
language without invalidating existing programs. All of the goals were
important and each decision was weighed in the light of sometimes
contradictory requirements in an attempt to reach a workable com­
promise.

To obtain copies of the ANSI Standard and Rationale Document, send
your request to:

American National Standards Institute
1430 Broadway
New York, NY 10018

1.3.1 ISO C

During the development of the C standard, the ANSI committee worked
closely with international standards bodies to ensure that the resulting
specification would be approved internationally. This close cooperation
led to the relatively quick adoption of the ANSI standard by the Interna­
tional Standards Organization (ISO) in 1990. ISO C (officially ISO/IEC
9899:1990) is identical to the ANSI standard. We use the term ANSI C
throughout the book, but we could just as easily say ISO C.

Although both ANSI and ISO worked hard to internationalize the C
language, particularly with the addition of multi byte characters and wide
characters, there were nevertheless some shortcomings in the specification.
These were addressed in a 1994 amendment to the ISO standard called
Amendment 1.

1.3.2 C++ and "Clean Crr

c++ is almost a superset of ANSI C, except that it does not support some
of the very old anachronisms from the original K&R standard. C++, for
example, requires function declarations to use prototypes whereas the
ANSI standard supports nonprototyped declarations for the sake of back­
ward compatibility.

By restricting oneself to a subset of C features (the ones you would
want to use anyway), it is relatively easy to write C code that can be com­
piled by a C++ compiler. This subset of ANSI C has been dubbed Clean C
because it strips out all the anachronisms from K&R days (and before),
and leaves only the newest and most useful features of C.

Aside from promoting good coding habits, Clean C has the added
benefit of producing code that is portable across C and C++ implementa­
tions. Such code can be used alongside C++ code or as a starting point for
a gradual transition to C.

www.manaraa.com

8 1: Introduction to Programming

In general, this book describes Clean C. When we need, for the sake of
thoroughness, to describe features that are not compatible with C++, we
always note it.

1.4 Nature of C

The C programming language has acquired the reputation (not entirely
undeserved) for being a mysterious and messy language that promotes bad
programming habits. Part of the problem is that C gives special meanings
to many punctuation characters, such as asterisks, plus signs, braces, and
angle brackets. Once a programmer has learned the C language, these
symbols look quite commonplace, but there is no denying that a typical C
program can be intimidating to the uninitiated.

The other, more serious, complaint concerns the relative dearth of
rules. Other programming languages, such as Pascal, have very strict rules
to protect programmers from making accidental blunders. It is assumed in
Pascal, for instance, that if a programmer attempts to assign a float­
ing-point number (same as a real number) to a variable that is supposed to

hold an integer, it is a mistake, and the compiler issues an error message.
In C, the compiler quietly converts the floating-point value to an integer.

The C language was designed for experienced programmers. The com­
piler, therefore, assumes little about what the programmer does or does
not intend to do. This can be summed up in the C tenet:

Trust the programmer.

As a result, C programmers have tremendous liberty to write unusual
code. In many instances, this freedom allows programmers to write useful
programs that would be difficult to write in other languages. However, the
freedom can be, and is, abused by inexperienced programmers who delight
in writing needlessly tricky code. C is a powerful language, but it requires
self-restraint and discipline.

One of the main points made repeatedly throughout this book is that
there is a huge difference between good programs and working programs.
A good program not only works, but is easy to read and maintain. Despite
what some people claim, it is very possible to write good programs in C.
Unfortunately, many C programmers are content to write programs that
merely work.

www.manaraa.com

2
Introduction
to Software
Engineering

For 'tis the sport to have the engineer Hoist with his own petar.
Shakespeare, Hamlet

In the previous chapter, we introduced same basic information about pro­
gramming and programming languages, particularly C. If this were a book
about building bridges, this first chapter might have been an introduction
to the tools you would neeci-hammer, saw, drill, etc. Obviously there is a
lot more to building a good bridge than simply knowing how to use the
tools.

Similarly, creating software products requires considerably more skill
than simply wielding the programming tools. There is an entire discipline
called software engineering that deals with designing, creating, testing, and
maintaining large software products. In this chapter we introduce some
key software engineering themes, many of which we will revisit through­
out the course of the book.

www.manaraa.com

10 2: Introduction to Software Engineering

2.1 Introduction

Though the cost of computer hardware-the silicon chips containing the
millions of transistors that form the instruction set and memories-has
shown a consistent trend downward over the years, the cost of software
has not followed suit. The high cost of software is due largely (and para­
doxically) to the ease and flexibility with which it can be shaped.

Unlike the physical limitations imposed on hardware (such as the num­
ber of gates you can fit on a chip, the speed of electrons in the medium,
and the amount of heat that can be dissipated), software is limited mainly
by the imagination of the software engineer. While flexibility is an impor­
tant aspect of software, unrestrained use of this flexibility is a temptation
that all responsible software engineers must resist.

As John Shore points out in his book The Sacher Tort Algorithm,
flexibility is both deceptive and seductive. Without the discipline of soft­
ware engineering, unsuspecting programmers soon find themselves deeply
mired in the tar pits of complexity. Using the techniques of software engi­
neering, it takes a little longer to be caught in those pits.

2.2 Stages of Software Production

When you learn a programming language, particularly if its your first lan­
guage, you need to focus on the actual coding process-how to use the
tools available in the programming language to achieve one's ends. But the
actual coding is only one step of the software engineering process. As
shown in Figure 2-1, there are several important stages of software devel­
opment that come before and after coding.

As shown by the arrows upward, there's a lot of feedback in this proc­
ess. During architectural design, it is usually necessary to revise the prod­
uct specification. And results of debugging and testing obviously need to
be fed back into the coding stage. Moreover, the stages shown are very
idealized. In the real world, it's rare that a software team has the luxury of
completing each of these stages before moving on to the next. More often,
many of these processes occur in parallel. It is not uncommon for product
specification to change during the coding stage, or even during the testing
stage.

Although we do not endorse anarchy in software development, we do
feel that it's important to recognize the dynamic nature of software pro­
duction. Software engineering is driven by many factors-competition,
hardware and software standards, hardware prices-that are changing at
an unparalleled rate. It is simply unrealistic to hope that assumptions
made during product specification will still hold true during coding. The
process must be somewhat flexible to succeed.

www.manaraa.com

2.2 Stages of Software Production 11

Product Specification

Architectural Design

Project Planning

Detailed Design

Coding

Debugging

Testing

Maintenance

Figure 2-1: Stages of Software Development

This is one reason why it makes sense to concentrate on the code con­
struction stages-detailed design, coding, and debugging. These are the
stages that you can control, and they are the only stages in the software
engineering process that are guaranteed to be done. These are also the
stages in which the highest percentage of programmers participate, espe­
cially novice programmers. Finally, code construction has an enormous
impact on the quality of the final product. While it is true that even the
best coding practices cannot compensate for a poor architecture, it is
equally true that poor coding practices can destroy a product whose archi­
tecture is excellent.

www.manaraa.com

12 2: Introduction to Software Engineering

2.3 Product Specification

To produce a quality software product, it is essential that the product be
well understood before the work starts. To ensure that everyone involved
has the same idea about what the product is supposed to do, it is impor­
tant to develop a detailed specification that describes exactly how the
product is expected to behave. A product specification does not detail how
the product is to be implemented (this is covered in a project plan). In­
stead, it describes how the final product will appear to users.

A product specification is useful to both users and project members.
Users can tell early on whether the product will meet their needs. Project
members will know just what their software is supposed to do. It is the
responsibility of the product designers to make sure that no unreasonable
expectations are set. Vague language such as "fast response" or "easy to
use" should be avoided. "Fast" may mean ten minutes, a second, or less
than a microsecond. How easy something is to use can be just as relative.

2.3.1 Who Does It?

The two cardinal rules for product specifications are consistency and sim­
plicity. To attain these goals, it is best if the specification is driven by one
person. Committees are good for review but poor for design. This
well-known truism is memorialized in the old joke that a camel is a horse
designed by committee.

Who is responsible for the product specification depends largely on the
nature of the product. If the software is to be sold, the marketing depart­
ment should be responsible. These are the people who are paid to know
what users want. In this case, the product specification generally starts out
as a wish list, which is then honed through consultation with the engi­
neers. In many companies, software engineering is responsible for the
product specification. Our own experience, and the anecdotal evidence,
suggests that it is very difficult for experienced engineers to look at a
product from a user's perspective. There are exceptions, and such indi­
viduals are extremely valuable.

2.3.2 Evolutionary Approach

Whoever does the specification should not spend too much time on the
initial version. Typically, a specification receives feedback from the archi­
tectural design phase. As the product gets built, system limitations usually
force the designers to rewrite the specification. When the product reaches
the state where it can be run, experimentation usually results in changes to
both the software design and the product specification.

www.manaraa.com

2.4 Architectural Design 13

Because of this feedback process, we advocate an evolutionary ap­
proach in which an executable prototype is developed as soon as the basic
features of the specification and design are fairly firm. The prototype can
then undergo enhancements in parallel with the addition of new features
in the design specification. This method results in fewer surprises during
the course of development because progress can be tracked by running
actual versions of the software.

2.3.3 What's in the Product Specification

At a minimum, the product specification should answer the following
questions:

• What does the product do in general and who will use it?

• What is the hardware and software environment on which the
product is expected to run? This should also include a description
of the minimum hardware and software requirements (i.e., mem­
ory, mass storage, graphics capabilities, etc.). If the product needs
to be adaptable to different environments, this should be clearly
stated.

• Are there compatibility issues? Does the product need to be com­
patible with other software or hardware products? If this is a new
version of an existing product, what type of backward compatibil­
ity must it support?

• What specific operations will the product perform? This should be
a list of user-oriented operations.

• What is the expected response time for each operation?

• What level of security is required?

• What future enhancements to the product are envisioned?

2.4 Architectural Design

Once the product is specified, a plan of attack must be formulated.
Whereas product specification is largely a marketing endeavor, architec­
tural design is strictly for software engineers. It involves dividing the pro­
gram into coherent parts, identifying and specifying data structures and
algorithms, identifying modules, and defining interfaces between modules.
The end result is a document called the architecture specification or top­
level design.

www.manaraa.com

14 2: Introduction to Software Engineering

2.4.1 Division into Subsystems

Depending on the size of the project, it is usually helpful to divide the
project into a few separate parts. For example, one of the first architec­
tural divisions of most software products is between the front-end and
back-end. The front-end is sometimes called the user interface, and the
back-end is sometimes called the engine. For distributed applications, the
front-end is called a client and the back-end is called a server. In general,
the front-end is responsible for obtaining input and formatting output,
and the back-end is responsibie for generating output.

Other common subsystems include:

• Database

• Communications

• Graphics

• Report formatter

There are many reasons to divide a product into subsystems:

• Simplicity. It is much easier to understand a~d visualize a program
that is divided into manageable chunks. It is also easier to gauge
progress.

• Protection from changes. User interfaces, for example, are usually
the least stable parts of most products. By dividing the user inter­
face into a separate component, you can isolate the remainder of
the application from changes.

• Plug-in modularity. You may be able to buy off-the-shelf compo­
nents. It is much easier to do this if the components are not too
closely integrated.

• Division of labor. Dividing a program into parts makes it easier for
different individuals to work on different parts without interfering
with one another.

2.4.2 Data Structures and Algorithms

Once the product has been divided into large parts, each part can be
looked at somewhat independently. The designers must identify the data
structures required and choose algorithms for performing operations.
There a number of factors to consider when designing data structures and
algorithms. How fast is the algorithm in processing typical data? How
much memory will the structure require? Will it be easy to change if we
want to add new capabilities?

Clearly, these are large subjects and are beyond the scope of this book.
Although we will touch on a few of the most common data structures and
algorithms in later chapters, you should be aware that this is only the tip
of the iceberg.

www.manaraa.com

2.4 Architectural Design 15

There is a wealth of literature about data structures and algorithms for
many different software disciplines. For instance, compiler technology has
evolved to the point where it is well understood (see Aho & Ullman, Prin­
ciples of Compiler Design). Graphics software includes a rich set of com­
mon algorithms and data structures (see Foley & Van Dam, Fundamentals
of Interactive Graphics). Operating system design is well laid out in A.
Tannenbaum's Operating System Design. Algorithms for database systems
can be found in C.]. Date's Database Design. Other software disciplines
are also documented to varying degrees. So to begin high level-design of a
software product, you should first gain a good understanding of the
problem and past solutions.

2.4.3 Modules

A module is a collection of data and routines that provide a cohesive set of
services. The goal in dividing a program into modules is to find clearly
demarcated and cohesive sections that are not strongly interrelated with
other sections. The fewer intermodule dependencies that exist, the easier
the program is to read and maintain.

Note that modules are at a lower level than the subsystems described in
Section 2.4.1. Each subsystem consists of at least one, but possibly more,
modules. The modules consist of functions, which consist of statements
and expressions, as shown in Figure 2-2.

The rationale for dividing a program into modules is basically the same
as for dividing a program into subsystems. It makes the program easier to
understand and maintain, it makes it easier to use off-the shelf compo­
nents, and it promotes division of labor.

In general, modules should be demarcated along functional lines. How­
ever, it is also important to protect data structures. As a general rule, every
data structure should be modifiable by only one module. If, after dividing
the program into modules on the basis of functionality, you find that two
or more modules need to access the same data structure, you should create
another module whose sole purpose is to manage the shared data struc­
ture.

In addition to creating modules to isolate data objects, you should also
create modules for:

• Hardware-dependent and system-dependent sections of code. Iso­
lating this code in a module makes it easier to adapt the program
to different environments.

• Input and output: Putting all I/O functions in a single module
makes the program less vulnerable to changes in file formats.

• Reusable code. Any code that you may be able to use in other pro­
gramming projects should be packaged in a module.

www.manaraa.com

16

Language statements and
expressions: At the source file
level, every program consists of
language statements and
expressions.

Functions: Statements and
expressions are grouped together
to make functions.

Modules: Functions are grouped
together to make modules.

Programs: Programs consist of
groups of modules.

2: Introduction to Software Engineering

o~o

o oUQJ 0
o

Figure 2-2: Software engineering is based on a hierarchy of programming compo­
nents.

www.manaraa.com

2.5 Project Planning 17

2.4.4 Information Hiding

One of the basic principles behind both structured programming and ob­
ject-oriented programming is information hiding. The basic idea is that
each program unit, whether it be a module or a function, hides some in­
formation and makes visible (or exports) other information. A module
should export only the minimum amount of information required by ex­
ternal modules.

For example, each module "owns" certain data objects on which it op­
erates. The ability to operate on an object implies an understanding of the
object's internal structure. A module should give other modules enough
information to properly declare common objects, but not so much infor­
mation that the other modules can also operate on the objects.

Hiding information about data objects is only one way to use informa­
tion hiding. You can also use it to hide complex algorithms, hardware and
software dependencies, and areas of the application that are likely to
change. In all of these instances, the goal is to eliminate dependencies on
possibly unstable parts of a program so that you can modify these parts
later without affecting the rest of the program.

In addition to making it easier to modify data structures and code, in­
formation hiding also makes it easier to understand a program because
many details are hidden. It also enhances reliability because access to data
objects is centralized where it can be easily monitored.

2.4.5 Interfaces

The information that a module makes public is called an interface. Typi­
cally, an interface is simply a list of functions, together with a description
of the type of input expected and the output returned. If a module were an
iceberg, the interface would be the tip above water. Ideally, the interface
should be small and simple, but at the same time it should provide access
to all the functions hidden under the water.

2.5 Project Planning

Like any construction endeavor, creation of software requires manage­
ment of the necessary people and resources. Management will be effective
only if there is, at the outset, a good understanding of the costs in terms of
people, time, and computing power.

A seminal work on the software engineering process is The Mythical
Man-Month by Dr. Fredrick P. Brooks. Dr. Brooks describes the pitfalls
and obstacles he experienced in the development of IBM's OS/360, a large
operating system that runs on IBM's 360 series of mainframes. Despite the
fact that it was written more than 20 years ago, and despite the many ad-

www.manaraa.com

18 2: Introduction to Software Engineering

vances made in software production since that time, many of Brooks's
observations are still valid today.

Unlike other engineering disciplines, software is pure abstraction. As
Dr. Brooks points out, a programmer "builds his castles in the air, from
air, creating by exertion of the imagination." The civil engineer at least
knows the distance his bridge has to span. From that he has a rough esti­
mate of the bricks or steel beams required to make his bridge. With soft­
ware there are no physical parameters to measure against. The only guides
are previous attempts at solving similar problems.

Brooks recommends that you plan to throwaway the first attempt,
since it's likely to be worthless. Fortunately, there is more literature avail­
able today on various software efforts than there was in 1972 when
Brooks wrote of his experiences, so the first attempt is often salvageable.
Still, there is no substitute for having done it before.

Brooks, based on his experience as IBM's O/S 360 project manager,
claims that most software product schedules can be broken down as fol­
lows:

• 1/3 product specification and scheduling personneV

• 116 coding

• 114 component testing and early system testing

• 1/4 complete system integration and testing

Our experience in the production of compilers, editors, and debuggers
supports this contention. If the schedule does not allow for 50% debug­
ging and testing time, you will be faced with the choice of shipping a
poor-quality product or delaying shipment in order to properly test and
debug the system.

Ideally, the modules specified during the architectural design phase
should lead to well-defined tasks, with little need for communication with
the rest of the product. Additionally, each task should require no more
than one person. When people dispute large, ill-defined interfaces between
sections, a lot of time and energy is wasted. If the parts are not well se­
lected and time has to be spent later in the project to repartition and hire
and train more personnel, the project is likely to run way past its target
date.

The phenomenon of losing time due to the overhead of training more
people and choosing bad partitions gives rise to Brooks's law:

Adding more people to a late software project makes it later.

Partitioning allows each engineer to concentrate on his or her particu­
lar section of the product. It is important to keep the amount of interac­
tion between partitions to a minimum so that development of different
partitions can occur simultaneously. This is the principal notion behind
modularity. Although modularity may result in redundant code across
modules, it allows everyone to get on with their own end of the effort
without wasting time in endless design meetings.

www.manaraa.com

2.5 Project Planning 19

Tracking a project's progress can be a bit tricky. Initial progress is gen­
erally quite fast. As complexity builds, however, progress slows down.
Our experience has shown that most products follow the development
curve shown in Figure 2-3. In fact, as the curve suggests, by the time 90%
of the functionality is in place, you are still only halfway to a shippable
product.

2.5.1 The NIH Syndrome

A common pitfall of software design is known as the NIH (Not Invented
Here) syndrome. This refers to a tendency among some engineers to feel
that if a product or subsystem was not invented by members of the design
team, it can't be any good. There are many high-quality software compa­
nies that will sell sources for all kinds of software products. A part of a
responsible software design plan should include the option of buying part
or all of the system from another source. We were pleased to see that our
advice was taken by a well-known Windows data communications pack­
age vendor who purchased the C interpreter in the first edition of this
book for its scripting language.

2.5.2 Tools

It is during the project planning phase that decisions should be made
about what development tools to use. Even the choice of programming
language can often be delayed until this point.

In addition to compilers, editors, and debuggers, there are a number of
other tools that are helpful for efficient software production. In fact, there
is an entire industry, called Computer-Aided Software Engineering
(CASE), that develops utilities to facilitate software production. A good
book on using and building software tools is Software Tools by Kernighan
and Plauger. Two indispensable tools, described briefly in the following
sections, are source-code control systems (sometimes called version control
systems) and automatic product-build systems.

2.5.2.1 Source Management

For a large software product with many subsystems and modules and
more than one programmer, it is important to organize the source files so
that people don't get in each other's way. A source-control utility main­
tains a log of changes to a source file and a status of the file. For example,
it keeps track of whether the file is logged out for editing and who logged
it out. That way, two people can't accidentally edit the same file at the
same time and enter incompatible changes. The change history is useful for
removing ill-conceived features or discovering what change has caused the
latest bug.

www.manaraa.com

20 2: Introduction to Software Engineering

Functionality

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

50% Time

Figure 2-3: Typical software development curve.

2.5.2.2 Automatic Build

The idea behind automatic product building is that a single file describes
how the parts of a product combine to make the final set of programs. For
example, it lists the object files that need to be built, lists the header files
that each object file depends on, and describes how the object files are to
be linked together to create an executable image. More important, this file
lists dependencies for each object file. When any file is out of date with
respect to the final product, only the parts of the product that need to be
rebuilt are processed.

The instructions for building a product are stored in a file called a
build file. The build file serves two purposes: first, it specifies the mini­
mum amount of work required to build a product; and second, it acts as a
design document, detailing the dependencies and build rules for a product.

www.manaraa.com

2.6 Detailed Design 21

An automatic build utility also helps to prevent version skew, a prob­
lem that occurs when an object file compiled with obsolete header files is
linked with more current modules.

Recently, compilers have been supplied with project building features
that automatically construct makefiles.

2.6 Detailed Design

The detailed design stage is where code construction begins. It is at this
stage that the software engineer divides modules into functions, and de­
scribes each function at a high level of detail. There are a number of ap­
proaches to detailed design, but the one we have found most useful is
called top-down design and stepwise refinement. Before discussing this
method, though, we need to describe what functions are and why they are
so important.

2.6.1 Functions

A function is a collection of language components grouped together under
a single name. If the function is well designed, it does one small task,
which is indicated by its name. A well-designed function is like a black
box that accepts data as input, processes it, and hands back the results.
The function's name should indicate what the black box does. You should
be able to use the function without knowing how it does what it does. The
functions listed in Table 2-1 are examples from the C runtime library.
There are hundreds of other prefabricated functions in this standard li­
brary and in other libraries.

Table 2-1: Examples of functions from the C runtime library.

Function

fgetc()

fopen()

fclose()

timeO

sinO

logO

Description

Reads a character from a file.

Opens a file.

Closes a file.

Returns the current time.

Returns the sine of an angle

Returns the logarithm of a number.

You can think of a function name as an abbreviation for a long, possi­
bly complicated set of commands. You need define a function only once,
but you can invoke (or call) it any number of times. This means that any

www.manaraa.com

22 2: Introduction to Software Engineering

set of operations that occurs more than once is a candidate for becoming a
function. This elimination of redundancy is one reason to create functions.

Functions are more than just a shorthand, however. They enable you
to abstract information-to construct a complex operation out of simpler
operations. This yields two important benefits:

• Ease of change and enhanced reliability. If you need to change
program behavior, either to fix a problem or to adapt to new re­
quirements, the change need be made in only one place because
there is only one copy of each function. Remember, needless re­
dundancy is the hobgoblin of software engineers!

• Better readability. With the low-level details of an algorithm hid­
den away in functions, the algorithm is easier to read. In fact, even
if a set of operations is used only once in a program, it is some­
times worthwhile to make it a function if it aids readability.

2.6.2 Stepwise Refinement

The key to using functions successfully is to make them perform small
pieces of a larger problem. Ideally, however, each piece should be general
enough so that it can be used in other programs as well. For example,
suppose you want to write a program that counts the number of words in
a file. The best way to approach this programming problem is through a
method called stepwise refinement (also called top-down design). The ba­
sic idea behind this methodology is to start with a description of the task
in your natural language and then to break it into smaller, more precise
tasks. Then, if necessary, divide those smaller tasks into still smaller opera­
tions until you arrive at a group of low-level functions (called primitives)
that can be employed to solve the original problem. This approach is
sometimes referred to as divide and conquer because it allows you to di­
vide a large problem into small, manageable tasks. It's essentially the same
process that most writers use to produce long documents. They start with
a general outline that defines the skeleton of the piece, and then incremen­
tally add more and more detail.

As an example, let's start with the task

Count the number of words in a file.

As the first step in the refinement process, we can divide this operation
into the following steps:

open the file;
go to beginning of file
while not at end of file

read a word;
increment the word count;

print the word count;
close the file.

www.manaraa.com

2.6 Detailed Design 23

We could refine the steps even further by expanding read a word. You
and I know how to recognize the beginning and end of a word, but how
do you instruct the computer to do it? A series of instructions to perform
such a task is called an algorithm. Finding good algorithms is largely a
matter of experience. The more exposure you have to different types of
problems, the easier it becomes. The only real rule is: don't be satisfied
with your first solution. Even if your first solution seems elegant, think
about the problem some more. There may be an even better solution. And
if your first solution seems complex, then you definitely need to think
about it some more. At the detailed design level, most software problems
have simple solutions.

A simple algorithm for finding the beginning and end of a word is:

read characters until alphabetic character;
read characters until not alphabetic character;

The detailed design for counting words in a file is:

open the file;
go to beginning of file
while not at end of file
read characters until alphabetic character;

read characters until not alphabetic character;
increment the word count;

print the word count;
close the file.

The process we have just illustrated-starting form a statement of a
problem and proceeding in steps to detail the solution-is the essence of
stepwise refinement. This process actually begins during the architectural
design stage, at which point the problems are broader.

The design listed above actually has some flaws in it. What happens if
the file begins with a word? Is it counted? What happens if a word is hy­
phenated? Is it counted as one or two words? Are single-letter words accu­
rately counted? These questions point out an important design rule:

• Study the design and verify that it works before moving on.

Here are a few more rules for stepwise refinement:

• Always start at the top level.

• Avoid language-specific details.

• Postpone details as long as possible.

• Don't move to a lower level until you're convinced that the current
level is correctly specified.

• If you're having difficulty at one level, the problem is probably at
the next higher level. Back up and redesign.

www.manaraa.com

24 2: Introduction to Software Engineering

2.6.3 Pseudocode

The outline of the program shown in the previous section is called pseudo­
code because the steps are written in a shorthand language that is some­
where between your natural language and the programming language.
(Some people call this language PDL-program design language). Once
you've written the pseudocode, it is usually fairly easy to translate it into a
high-level language.

Many of the steps shown in the pseudocode can be broken down even
further. However, these steps are sufficiently low-level because there are
runtime functions to perform them. For example, there is an fopen() func­
tion that opens a file, an fgetc() function that reads a character from a file,
a printf() function that prints text, and an fclose() function that closes a
file.

How do you know when to stop refining a design and start coding?
The general answer is when it gets to the point where the design seems
fairly obvious. Obviously, knowing the tools at your disposal is important
in determining the level of detail you need to design. Throughout the
book, we'll introduce many of the most common C library functions, but
you should also look at Appendix A for a complete description of the
standard library. Note also that most C compilers come with additional
libraries, so you'll need to consult your compiler documentation as well.

2.7 Coding

This entire book focuses on the coding stage, so we won't say much about
it here except to note that if the detailed design is good, the transition
from pseudocode to real code should be smooth. Each line of pseudocode
should translate into one or a few lines of real code. In our previous ex­
ample of counting words in a file, the pseudocode leads to the C function
(flaws included) shown in Program 2-1. We retain the pseudocode as
comments.

Obviously, there is a lot of detail involved in translating from pseudo­
code to C. In addition to encoding the algorithm itself, we need to add
support elements required by the programming language, such as variable
declarations. Even though this program may look complex, it is actually
relatively simple. By the time you finish this book, this will seem like a
trivial program.

We have already mentioned that there is a lot of feedback between
software engineering stages. This is particularly true of the design and
coding stages. As you code a function, you may notice flaws in the design.
It is very common for programmers to try to fix these design problems
during coding, but it is generally better to back up and redesign the rou-

www.manaraa.com

2.8 Debugging 25

Program
2-1

tine. It's much easier to think about design issues in pseudocode where you
don't need to worry about language syntax details.

/* This function counts the number of words in a file
*/

iinclude <stddef.h>
#include <stdio.h>
#include <ctype.h>
#define FAIL -1
#define SUCCESS 1

int CountWords(char *filename)
{

FILE *fp;
char c;
int wordcount = 0;

/* open the file */
if «fp = fopen(*filename, IOrIO» -- NULL)

return FAIL;
while (!feof(fp»
{

}

/* read characters until alphabetic character */
while (!isalpha(fgetc(fp»)
{

/* read characters until not alphabetic
* character*/

while (isa1pha(fgetc(fp»)
wordcount++; /* increment word count */

/* print the word count */
printf (IOThe number of words is lIsd.\n lO , wordcount);
/* close the file */
fclose (fp);

return SUCCESS:

2.8 Debugging

Not even the best, most experienced programmers write bug-free code on
their first try. A large part of programming, therefore, consists of finding
and fixing bugs. The original computer "bug" was a moth caught in the
electromechanical switches of the Mark II computer and discovered there
by Lieutenant Grace Hopper in 1945. The term bug has come to mean any
erroneous behavior of a computer system. Nowadays though, most bugs
are caused by problems in software, not hardware. The process of finding
and fixing bugs is known as debugging.

www.manaraa.com

26 2: Introduction to Software Engineering

Once the development phase of a project is under way, the edit­
compile-debug cycle becomes the norm. There are three laws of debug­
ging:

1. All complex software has bugs.

2. The bug is probably caused by the last thing you touched.

3. If the bug isn't where you are looking, it's somewhere else.

The first law reflects the insidious nature of algorithms to grow expo­
nentially more complex as they gain added functionality. The second law
is simply common sense. In a large project, you need a place to start
looking for the bug, and often the bug is found at the end of the day with
the big management demo due the next day. Instead of panicking, take a
deep breath and think of the last feature you added. Odds are, that's
where your bug will be. At this time, your source code control system with
its change history will come in handy. The third law is inspired by the hu­
man tendency to stick to first impressions. For instance, you may be con­
vinced that your bug is caused by the second law, but after an exhaustive
search you still can't find it. Obviously, you need to look elsewhere. Al­
though this is obvious to the dispassionate reader, it is often not so clear
to the frustrated, sleep-deprived programmer.

Debugging is an art that requires patience, ingenuity, and most of all,
experience. The first step in fixing a bug is to isolate the erroneous behav­
ior. Frequently, news of a bug comes from a user in the form: "It doesn't
work." This general comment needs to be pinpointed to something like:
"After I type run, it prints the first variable and then hangs."

The important point is that you, the programmer doing the debugging,
must be able to reproduce the bug at your console. If at all practical, this
means using exactly the same input as the person who reported the bug.

2.8.1 Oebuggers

Debugging tools are available at various levels, from assembler to
high-level source language. Most compilers sold today come with a full
debugging system. Source-level de buggers are the easiest to use. They al­
low you to put breakpoints on source lines and set and examine local and
global variables when program execution reaches a breakpoint. Some al­
low you to step through a program one source line at a time, examining
variable values as you go. However, this mode of attack is often too slow
to be truly useful. The art of debugging is knowing what is useful informa­
tion and what isn't.

www.manaraa.com

2.9 Testing 27

2.9 Testing

A product is only as good as its test system. In fact, the process of testing
and validating software systems is a discipline in its own right. Through­
out development, testing is done to ensure that each module performs as
expected. The tests themselves may consist of ANSI-sanctioned validation
suites, customer benchmarks, commercial test suites, tests developed by
the development team, and a set of tests that probes for the existence of
prior bugs that are claimed to have been fixed. Commercially available
suites consist of input data and a convenient control and analysis system
that automates the test and summarizes results. Such test systems may take
days to complete.

There are two major test phases of the complete product before it is
ready to ship to users: the alpha test and the beta test.

The alpha test consists of testing performed by the development team
and others within the organization for the express purpose of turning up
any bugs in the final product. Once a product has entered the alpha test,
the code for that version of the product should be frozen. The only
changes to the software should be bug fixes. Source-code control systems
are a big help in maintaining version integrity.

The beta test refers to a phase of testing that allows select customers to
tryout the new product before it is made available to the general public.
These customers should be people who understand that in return for
newer and better products, they are accepting a bit of risk that the product
still contains significant bugs. The beta-test phase begins when the alpha
test is complete, or far enough along to guarantee a large measure of reli­
ability.

The point of a beta test is to make sure that the product will function
properly in "real life." For instance, most test systems only test that the
system behaves properly when fed correct input. Proper diagnosis and
treatment of erroneous input can be essential to a usable product.

2.9.1 Test Engineering

Most software engineering organizations have a group dedicated to testing
that is responsible for final acceptance of products. This group creates,
maintains, and runs test suites and has the power to delay shipping a
product if it decides the product is not dependable.

Test engineering is a challenging part of software engineering. It is not
enough to write tests that cover every aspect of a product. The tests must
be sophisticated enough to pinpoint problem areas when a failure occurs.
Though the tests themselves are not shipped with a product, the quality of
the test system is directly reflected in the quality of the final product.

www.manaraa.com

28 2: Introduction to Software Engineering

2.9.2 Performance Analysis

Since the main thrust of a development effort is toward modularity and
correctness, it is possible that execution speed may suffer. To some degree,
this is to be expected, although even in the design stages you should be
careful to choose efficient high-level algorithms. No amount of trickery
can compensate for an algorithm that is fundamentally slow. However, it
is much easier to pinpoint bottlenecks (places where the program spends
much of its time) after the program is working than to predict in advance
where the bottlenecks will lie. It is unwise, therefore, to devote much of
the initial design to low-level efficiency.

A common feature of C compilers is an option known as profiling.
This refers to the ability to count each function call made and keep track
of the amount of time spent in each function. The program is compiled
with the profiling option and run with some typical input. The profiler
then generates a data file that contains the call frequency and duration. A
profile display program reads the data file and prints out a formatted
analysis. This analysis shows immediately the functions in which the pro­
gram spends most of its time. This allows you to focus your tuning efforts
on the trouble spots.

Some systems support a more fine-grained analysis that works across
arbitrary code segments. This allows you to pinpoint CPU-hungry lines
within functions.

2.10 Maintenance

Maintenance of physical objects, like bridges and cars, refers to periodic
replacement of worn-out parts. This tendency of mechanisms to wear out
and work less well over time is an example of a general principle known as
entropy. Entropy embodies the second law of thermodynamics, which can
be paraphrased: all systems tend to become less ordered over time.

Though software does not "wear out" like physical objects, it is
equally susceptible to the effects of entropy. Software products often suffer
the effects of fast employee turnover or rapid expansion. As new engineers
join a project, they need to become familiar with the product before they
can make substantial contributions. It is not unusual for bugs to be cre­
ated by engineers who have only a partial understanding of the product.
Obviously, this problem can be mitigated by readable code and good
documentation.

Another entropic phenomenon that affects software is the tendency to
add too many bells and whistles to a product. As a software product be­
comes more popular, its user community grows, and so also grows the
number of suggestions for new features. There is a great temptation to add
as many of these features as possible, but you need to consider how the

www.manaraa.com

2.11 The Bridge Metaphor 29

new features will affect the overall program. Adding new features usually
means that the program will run slower and will require more system re­
sources. In addition, new features can make a product more difficult to
learn, use, and maintain. You should carefully consider these potential
drawbacks before adding new features to a stable product.

Bugs aside, the completeness or orderedness of a software product can
be measured only relative to the environment in which it operates. That is,
does it run on the right hardware, does it have sufficient speed and power,
is it easy to use, is it cost-competitive? By itself, a software product might
be bug free, and if it were not touched it could remain bug free till dooms­
day. But the environment in which it operates is constantly changing, and
the product must change with it. Maintenance of software products, there­
fore, is a constant struggle to keep up with an ever-changing industry.

2.11 The Bridge Metaphor

We have already used the metaphor of designing and building a bridge to
describe software engineering. It is interesting to explore this metaphor
more closely to see how far it applies. While software construction is
similar in many respects to physical construction, there are also important
differences.

2.11.1 Similarities

• The larger the project, the more design and planning is required.
There are two reasons this is true: first, large projects are more
complex, which means that it is more difficult to see interdepend­
encies. Second, and perhaps even more important, large projects
require more people. Coordinating many individuals, each working
on different parts of a whole is one of the most challenging aspects
of any construction project.

• The earlier mistakes are discovered, the better. Or conversely, the
later mistakes are discovered, the worse. Imagine that after build­
ing 90% of a bridge, the designers suddenly discover that they for­
got to take into account the weight of the cars that would drive
over it. Correcting this flaw at this late date would be extremely
difficult and expensive. If, on the other hand, the mistake had been
discovered during the design stage, it would have been relatively
easy to fix. The same principle holds true for software construc­
tion. This is why it's important to take your time during the design
stage to ensure that you understand the problem completely.

• Mistakes can have disastrous consequences. A bridge that collapses
can kill people. Software that fails can also kill if, for example, the

www.manaraa.com

30 2: Introduction to Software Engineering

software is being used to control a nuclear power plant or an air­
plane. Bad software can also have disastrous financial conse­
quences. Today, people depend on software, which means that it
requires the same care and attention to detail as other types of en­
gineering.

• Use of prefabricated parts cuts development time. The builder of a
bridge does not plan on making screws, bolts, and nails. These can
be bought off-the-shelf. Similarly, a software engineer should use
as many off-the-shelf components as possible. Such components
are likely to be better tested and more stable than anything the en­
gineer could construct himself.

2.11.2 Differences

• Software must be designed for change. Bridges are designed to last
for centuries without major changes. Maybe the designers consider
the scenario of adding extra lanes at a later date, but in general,
the bridge is designed to be permanent. Software, on the other
hand, must be designed for change. A typical software program
becomes obsolete in a few years unless it is modified. Software en­
gineers must consider both foreseeable and unforeseeable modifica­
tions when designing a system.

• Reusable parts. We mentioned in the Similarities section that both
bridge construction and software construction use prefabricated
parts. Software construction, however, not only uses such compo­
nents but generates them. Even when concentrating on a specific
software project, the software engineer is constantly looking for
ways to design and package components so that they can be used
in future projects.

• Testing. It is impossible to test a bridge fully before it is built, but
components of the bridge can be tested. During construction, the
strength of the concrete, the steel beams, and rivets are tested as
the bridge is built. Computer simulations can even test certain as­
sumptions, but one is never 100% certain that the assumptions are
accurate. After the bridge is built, it is tested by the traffic that
flows over it and the winds that blow it. Though there is no way to
simulate all possible weather and traffic conditions, we are able to
build safe and stable bridges. In a similar way, software must be
tested during construction as well as at completion. Tests must be
created that exercise the various components of your software as it
is built. It is also important to get some real-life traffic across your
software bridge by enlisting users willing to try experimental, not
fully completed software. These people are called beta testers and
are essential to the delivery of quality software.

www.manaraa.com

3
C Essentials

A little learning is a dangerous thing.
Alexander Pope, An Essay on Criticism

One of the most difficult parts about learning a programming language is
that everything is interrelated. It often seems impossible to understand
anything before you know everything. In this chapter, we describe the C
essentials-what you need to know to write your first programs. To avoid
getting bogged down in details, we gloss over some of the intricacies of the
C language in this chapter. In later chapters, we provide a more thorough
discussion of the topics introduced in this chapter.

3.1 Program Development

In the previous chapter, we described the main program development steps
in general terms. In this section, we take a closer look at the mechanics of
code construction. As shown in Figure 3-1, going from a detailed design to
an executable program takes a number of steps. Some of the latter steps
vary from one computing environment to another. In this chapter, we de­
scribe these latter development stages in general terms. (The shaded box
on page 34 describes how to develop a program in a UNIX environment.)
You should read the system documentation for your computer to find out
how to compile and link programs in your particular environment.

www.manaraa.com

32

Redefine design

Figure 3-1: Stages of program development.

3: C Essentials

Architecture design

Test and debug
executable program

As already noted, the first step in developing a program is to clearly de­
fine the problem and design an algorithm to solve it. An algorithm is a
well-defined set of rules to solve a particular problem in a finite number of
steps. The art of programming consists of designing or choosing algo­
rithms and expressing them in a programming language. This stage of the
development process is extremely important, though it is often given short
shrift by beginners and experts alike. We'll have more to say about the
design stage in later sections of the book. For now, we are concerned with
the later stages of software development that occur after you have defined
the problem and designed an algorithm.

As shown in Figure 3-2, there are three general steps:

1. Edit each source file.

2. Compile each source file to produce an object file.

3. Link the object files together to produce an executable program.

Note that the source and object code can be spread out in multiple
files, but the executable code for a program generally resides in a single

www.manaraa.com

3.1 Program Development 33

file. The shaded box on page 33 briefly describes how these steps appear
in a UNIX environment.

compile compile compile compile

Runtime Library

Executable Code

Figure 3-2: Source files must be compiled to produce object files. The separate
object files are then linked together to form the executable file.

3.1.1 Compiling Source Files

By the end of the design stage, you should have defined a set of routines,
called functions, each of which solves a small piece of the larger program­
ming problem. The next step is to actually write the code for each func­
tion. This is usually done by creating and editing C language text files.
These files are called source files.

The task of the compiler is to translate source code into machine code.
How the compiler does this is beyond the scope of this book. Suffice it to
say that the compiler is itself a program (or group of programs) that must
be executed. The compiler's input is source code and its output is object
code. Object code represents an intermediary step between the source code
and the final executable code. The final steps are handled by two addi­
tional utilities called the linker (or binder) and the loader.

www.manaraa.com

34 3: C Essentials

Compiling and Linking in a UNIX Environment

In UNIX environments, you edit the source files with a text editor, such
as ed or vi. To compile the program, you invoke the compiler with the
cc command, followed by the name of the source file. For example,

$ cc test.c

The dollar sign is a command prompt that signifies that the operat­
ing system is waiting for user input. Different operating systems use dif­
ferent characters for the command prompt. Throughout this book, we
shade characters emitted by the computer to differentiate them from
characters that you enter from the keyboard.

UNIX requires the names of C source files to end with a .c exten­
sion. If your source file contain errors, the compiler prints out the error
me ages, but does not create an object file. If the program is error-free,
the compiler produces an object file with the same name a the source
file except that it has a .0 extension instead of a .c extension. Under
UNIX, the cc command also invokes the linker and produces an execu­
table file called a.out by default. You can override this default filename
by using the -0 option. For example,

$ cc '0 test test.c

forces the executable file to be named test. If the cc command contains
only one source filename, then the object file is deleted. However, you
can specify multiple soutce files in the same compilation command. The
UNIX cc program compiles each one of them separately, creating an
object file for each, and then it links all the object files together to create
an executable file. For instance, the command

$ cc -0 test modulel.c module2.c module3.c

produces four files-three object files called modulel.o, modufe2.o, and
module3.o, and an executable file called test. To run the program, you
enter the executable filename at the command prompt:

$ test

The loading stage is handled automatically when you execute a pro­
gram.

3.1.2 Linking Object Files

After creating object files by invoking the compiler, you would combine
them into a single file by invoking the linker. In addition to combining
object files, the linker also links in functions from the runtime library if
necessary. The result of the linking stage is an executable program.

www.manaraa.com

3.2 Functions 35

Although linking is handled automatically by some operating systems
(e.g., UNIX), the linker is actually a separate program. In some environ­
ments it must be invoked separately.

3.1.3 Loading Executable Files

There is one additional step that is often ignored because it is usually han­
dled automatically by the operating system. This is the loading stage, in
which the executable program is loaded into the computer's memory.
Most operating systems automatically load a program when you type the
name of its executable file. A few operating systems, however, require you
to explicitly run a loader program to get your program into memory.

3.1.4 The Runtime Library

One of the reasons C is such a small language is that it defers many opera­
tions to a large runtime library. The runtime library is a collection of ob­
ject files. Each file contains the machine instructions for a function that
performs one of a wide variety of services. The functions are divided into
groups, such as I/O (Input and Output), memory management, mathe­
matical operations, and string manipulation. For each group there is a
source file, called a header file, that contains information you need to use
these functions. By convention, the names for header files end with a .h
extension. For example, the standard group of I/O functions has an asso­
ciated header file called stdio.h.

To include a header file in a program, you must insert the following
statement in your source file:

#include <filename>

For example, one of the I/O runtime routines, called printf(), enables
you to display data on your terminal. Before you use this function, you
should enter the following line in your source file:

#include <stdio.h>

Usually, this would be one of the first lines in your source file. We de­
scribe the #include directive and other preprocessor commands in more
detail later in this chapter.

3.2 Functions

The most important concept underlying high-level languages is the notion
of functions. In other languages, they may be called subroutines or proce­
dures, but the idea is the same. A C function is a collection of C language
operations. A function usually performs an operation that is more com-

www.manaraa.com

36 3: C Essentials

plex than any of the operations built into the C language. At the same
time, a function should not be so complex that it is difficult to understand.

Typically, programs are developed with layers of functions. The
lower-level functions perform the simplest operations, and higher-level
functions are created by combining lower-level functions. The following,
for instance, is a low-level function that calculates the square of a number.
This is a simple function, yet it performs an operation that is not built into
the C language.

int square(int num)
{

int answer;
answer = hum * num;
return answer;

3.2.1 Anatomy of a C Function

Since functions are the building blocks of all C programs, they are a good
place to start describing the C language. The general layout is shown in
Figure 3-3, although some of the elements are optional. The required parts
are the function name, the parentheses following the function name, and
the left and right braces, which denote the beginning and the end of the
function body. The other elements are optional.

The function shown in Figure 3-4 is the square() function that we in­
troduced earlier. The figure identifies all of the function's components.

We'll describe each line in turn. The first line has three parts. The first
word, int, is a reserved keyword that stands for "integer." It signifies that
the function is going to return an integer value. There are about thirty
keywords in C, each of which has a language-defined meaning. Keywords
are always written in lower-case letters and are reserved by the C lan­
guage, which means that you may not use them as names for variables.
(The complete list of keywords appears in Table 3-2.)

The second word, square, is the name of the function itself. This is
what you use to call the function. We could have named the function any­
thing, but it is best to use names that remind you of what the function ac­
tually does. The parentheses following the name of the function indicate
that square is, in fact, a function and not some other type of variable. num
is the name of the argument.

Arguments represent data that are passed from the calling function to
the function being called. On the calling side, they are known as actual
arguments; on the called side, they are referred to as formal arguments. As
with naming functions, we could give the argument any name we want,
but num seems sufficiently descriptive.

www.manaraa.com

3.2 Functions

Function
type

Function
name

Figure 3-3: Elements of a function. The shaded components are optional.

37

The argument type, int, indicates that num is an integer. Although not
absolutely required, it is useful to enter the type so that the compiler can
ensure that the actual and formal arguments have the same type. Function
definitions that include a type for arguments are called function proto­
types.

Functions can take any number of arguments. For example, a function
that computes x to the y power would take two arguments, separated by a
comma (the spaces between the parentheses and the arguments are op­
tional):

int power (int x, int y)

The function body contains all of the executable statements. This is
where calculations are actually performed. The function body must begin
with a left brace and end with a right brace.

www.manaraa.com

38

function
body

3: C Essentials

function type

function name

1
'-------- argument type

,....------ argument name

int num

int answer; ---...,.---- variable declaration

answer z:: num • num;
return answer;

) C statements

Figure 3-4: Anatomy of the squareO function.

The line following the left brace is a declaration of the integer variable
called answer. Program variables are names for data objects whose values
can be used or changed. The declaration of answer follows the same for­
mat as the declaration of num, but it lies within the function body. This
indicates that it is not an argument to the function. Rather, it is a variable
that the function is going to use to hold a value temporarily. Once the
function finishes, answer becomes inaccessible. All variables declared
within a function body must be declared immediately after a left brace.

The next line is the first executable statement-that is, the first state­
ment that actually performs a computation. It is called an assignment
statement because it assigns the value on the right-hand side of the equal
sign to the variable on the left-hand side. You would read it as: "Assign
the value of num times num to answer." The symbol ,~ is an operator that
represents multiplication and "=" is an operator that represents assign­
ment. Assignment is the process of storing the value of the expression on
the right-hand side of the equal sign in the data object represented by the
left-hand side of the equal sign.

The next statement is a return statement, which causes the function to

return to its caller. The return statement may optionally return a value
from the function, in this case answer.

Before proceeding, we need to take a closer look at some of these func­
tion components-particularly variables, variable names, constants, ex­
pressions, and assignment statements.

www.manaraa.com

3.3 Variables and Constants 39

The Mailbox Analogy

A good way to think about memory is as a series of mailboxes, where
each box has a unique address. A thousand boxes would have addresses
from ° through 999 (in C, as in most computers, addressing begins at
zero instead of one). Inside each box is a slip of paper with a number on
it. To store the value 5 in box 200, you would open the box, erase
whatever number is on the slip of paper, and write a 5 on it. To see
what is in box 350, you would open the box and read the value on the
slip of paper, and then return the slip unchanged. The only restrictions
on the mailboxes are that each one can hold only one slip of paper, or
value, at a time.

It is a small conceptual jump from the mailbox example to computer
memory. The processes are identical with one small addition in the
computer model. In a computer, it sometimes takes more than one
mailbox to store a value. A large integer, for example, might require
four bytes, or mail boxes. In this case, the compiler would store the
value by opening four consecutive mailboxes and writing a portion of
the number in each. To read the value, it would again need to open all
four mailboxes.

A computer language lets you give a mailbox a name so that you
need not remember its numeric address. Whenever you declare a vari­
able, the compiler finds an unused mailbox and binds the address of the
unused box to the variable name. Then when you use the variable name
in an expression, the compiler knows what box to open.

3.3 Variables and Constants

The statement

j = 5+10;

seems straightforward enough. It means "add the values 5 and 10 and as­
sign the result to a variable called j." But there are actually a number of
underlying assumptions that give this statement meaning. It seems intelli­
gible to us only because we are accustomed to dealing with the symbols
involved. We know that "5" and "10" are integer values, "+" and "=" are
operators, ";" delimits the end of the statement, and j is a variable whose
value can be changed. To the computer, however, all of these symbols are
merely different combinations of on/off bits. To make sense out of the ex­
pression, a computer must be told at some point what each of these sym­
bols means. This is one of the functions of the compiler.

www.manaraa.com

40 3: C Essentials

The compiler knows that when it sees a combination of digits °
through 9, it is looking at an integer value. If there is a period within the
string of digits (i.e., 3.141), then it is looking at a floating-point number.
These are just two of a multitude of rules that the compiler uses to make
sense out of a program. This stage of the compiler, where such rules are
used to identify operators, delimiters, numbers, and names, is called lexical
analysis. Later, a parse stage will examine these computer parts of speech
to see if they have been combined legally.

Two important programming tokens are constants and variables. As
their names imply, a constant is a value that never changes, whereas a
variable can represent different values. Consider again the statement

j = 5+10;

The symbols "5" and "10" are constants because they have the same
value no matter where they appear in a program. The symbol j, on the
other hand, is the name of a variable that is able to represent different val­
ues. After this statement, j will have the value 15, but we could make an­
other assignment later in the program that would give it a different value.
A variable achieves its "variableness" by representing a location, or ad­
dress, in computer memory.

The variable j is located at some address, say 2486. So the assignment
statement really means: "add the constants 5 and 10, and then store the
result at memory address 2486" (see Figure 3-5).

The statement

j = j - 2;

says "fetch the contents of address 2486, subtract the constant 2 from it,
and store the result at 2486." In this case the value of j is first read and
then a new value is written. The box on page 39 describes a useful analogy
for thinking about computer memory.

Variable

j

Address

2482

2486

2490

Memory

.....-4 bytes---.

15

Figure 3-5: Memory after j =5+10. (We assume that j requires 4 bytes of storage,
as shown by the addresses.)

www.manaraa.com

3.4 Names 41

3.4 Names

In the C language, you can name just about anything: variables, constants,
functions, and even locations in a program. The rules for composing
names are the same regardless of what you are naming. Names may con­
tain letters, numbers, and the underscore character _, but must start with a
letter or underscore. Names beginning with an underscore, however, are
generally reserved for internal system variables.

Table 3-1 shows some legal and illegal names.

Table 3-1: Legal and Illegal Variable Names.

Legal Names

j5

sesquipedalial_name

j

Illegal Names

5j

int

$name

bad%#*@name

Names may not begin
with a digit.

int is a reserved key­
word.

Names may not contain
a dollar sign.

Names may not contain
any special character
except an underscore.

The C language is case sensitive, which means that it differentiates be-
tween lowercase and uppercase letters. So the names

VaR
var
VAR

are all different.
The advantage of case sensltlVlty is that you have more names to

choose from, but it also means that you should follow strict naming con­
ventions to ensure readability and maintainability.

A name cannot be the same as one of the reserved keywords (see Table
3-2). Also, you should avoid using names that are used by the runtime
library unless you really want to create your own version of a runtime
function. See Appendix D for a complete list of reserved names. Finally,
for maximum portability, you should avoid using names reserved by c++.
Table 3-3 lists the additional keywords used by C++, which cannot be
used in Clean C programs.

There is no C-defined limit to the length of a name, although each
compiler sets its own limit. The ANSI Standard requires compilers to sup­
port names of at least 31 characters. Some older compilers impose an

www.manaraa.com

42 3: C Essentials

8-character limit. For maximum portability, confine names to 31 or fewer
characters and try to ensure that the first eight characters of each name are
unique.

Table 3-2: Reserved C Keywords.
You may not use these as variable names.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Table 3-3: Reserved c++ Keywords.
You may not use these as variable names in Clean C programs.

asm inline static_cast

bool mutable template

catch namespace this

class new throw

const_cast operator true

delete private try

dynamic_cast protected typeid

false public using

friend reinterpret_cast virtual

There is some strategy involved in choosing names that make your
program easier to understand. When, for instance, do you use uppercase,
when do you use lowercase, and when do you use the underscore charac­
ters? Also, when is a single-letter name such as i or m suitable and when
should a name be longer and more meaningful? These are questions that
we'll address as we proceed. As a general rule, you should use lowercase
letters for variable names and uppercase for macro names. Another impor­
tant and obvious rule-but one that is often overlooked-is to choose
names that reflect their use. For instance, a variable that is used to store
the fractional part of a floating-point value could be called (ractionaCpart.

www.manaraa.com

3.5 Expressions 43

3.5 Expressions

An expression is any combination of operators, numbers, and names that
denotes the computation of a value. For example, all of the following are
expressions:

5

j

5 + j

5 * j + 6

f ()

f () / 4

A constant
A variable

A constant plus a variable

A constant times a variable plus a constant
A function call

A function call. whose result is divided by a constant

The building blocks of expressions include variables, constants, and
function calls. There are additional building blocks, but these are enough
to get started. The building blocks by themselves are expressions, but they
can also be combined by operators to form more complex expressions.
There are literally dozens of operators, but the following are some of the
most basic ones:

+ Addition

*

/

Subtraction

Multiplication

Division

Chapter 6 describes operators and expressions in detail.

3.5.1 Assignment Statements

The squareO function contains one example of an assignment statement:

answer = num * num;

The general format of an assigqment statement is shown in Figure 3-6.
The expression on the right-hand side of the assignment operator is

sometimes called an rvalue. The left-hand side of an assignment statement,
called an lvalue, must evaluate to a memory address that can hold a value.
Originally, the term "lvalue" was coined to define the expression on the
left-hand side of an assignment expression. However, this definition has
been loosened over the years to mean any expression that represents a
memory address-some lvalues refer to constants whose values cannot be
changed. Still, the distinction between lvalues and rvalues is a useful one.
For example, it wouldn't make any sense to turn the previous assignment
statement around,

num * num = answer;

www.manaraa.com

44 3: C Essentials

because the expression num * num is not an lvalue-it does not represent
a memory location.

Ivalue rvalue

Figure 3-6: Syntax of an assignment statement

3.6 Formatting Source Files

One aspect of C programming that can be confusing to beginners or
ex-FORTRAN programmers is that newline characters in the source code
are treated exactly like spaces (except when they appear in a character
constant or string literal). A newline is a special character that causes sub­
sequent characters to appear on the beginning of the next line. Whenever
you press the RETURN key on your keyboard, a newline is generated.
Because C ignores newlines, we could have written the square() function as

int square (int num) { int answerj
answer = num*numj return answerj }

While this is equally readable to the computer, it is less readable to
humans, and is therefore considered poor programming style. The com­
piler doesn't care how many spaces or newlines you insert between pro­
gram components. For example, the following is also legal:

int
square (int num)
{
answer num
* numj
return answer j

Again, this is an example of poor programming style. Note, in addition
that, unlike FORTRAN, you cannot insert spaces within names or key­
words.

Like other programming languages, the C language requires a con­
scious effort on the programmer's part to use consistent and readable con­
ventions. Our own style, exhibited in the examples throughout the book,
represents our personal preference, but is by no means the only good way
to format programs. The main points to keep in mind are readability and
consistency.

www.manaraa.com

3.6 Formatting Source Files 45

Program
3-1

3.6.1 Comments

A comment is text that you include in a source file to explain what the
code is doing. Comments are for human readers-the compiler ignores
them. Commenting programs is an important, though often neglected,
aspect of software engineering. Table 3-4 contains a general list of com­
menting do's and don'ts. The C language allows you to enter comments by
inserting text between the symbols /* and */. In the following example, the
asterisks that begin each line are included to aid readability-only the first
and last ones are required.

1*
" Author: P. Margolis
" Initial coding: 3/87
* Returns the square of num
*1

int square(int num)
{

int answer;

answer = num * num; 1* Does not check for overflow *1
return answer;

The compiler ignores whatever characters appear within the comment
delimiters. Note that a comment can span multiple lines. Formatting
comments so they are readable but do not interrupt the flow of the pro­
gram is difficult in all languages, including C. One method is to devote
entire lines to comments. Another is to put comments to the right of the
code. You should use this second method only if the comment can fit on a
single line. We use both formats in examples throughout the book. Nested
comments are not allowed in C, as described in the Bug Alert on page 48.

A more important issue is what to comment. In general, you should
comment anything that is not obvious. This includes complex expressions,
data structures, and the purpose of functions. In fact, all functions should
contain a header comment that describes what the function does. It is also
useful to comment changes to programs so that you can keep track of
modifications. This is particularly important if you are working on a small
piece of a larger project. However, comments without information content
can make a program difficult to read. Do not comment the obvious. The
following, for example, is poor commenting style:

j = j + 1; 1* increment j *1

Also, lengthy comments cannot compensate for unreadable code. As
Kernighan and Plauger note in The Elements of Programming Style,
"Don't document bad code-rewrite it."

www.manaraa.com

46 3: C Essentials

Commenting is largely a stylistic issue for which it is difficult to impose
hard-and-fast rules. The best way to learn is by studying the examples in
this book and other code written by experienced programmers.

Table 3-4: Do's and Don'ts of commenting.

Commenting Do's

• Include a header comment for
every function describing what
the function does at a high
level of abstraction.

• If you have a good reason for
violating good programming
style in a specific instance,
document the reason so that
others will not assume it is just
poor programmmg.

• During development of a pro­
gram, use comments to mark
sections that are incomplete.

• Use comments to note and ex­
plain the need for changes to
code.

• If the name doesn't tell the
whole story, use comments to
further describe the purpose of
variables, but remember that a
well-chosen variable name is
often the best comment.

Commenting Don'ts

• Do not describe how a piece
of code achieve its purpose.
This should be obvious from
the code itself.

• Do not repeat the code.
Comments should contain
additional information that
cannot be construed from the
code itself.

• Try not to use comments to
explain the purpose of vari­
ables. Instead, use meaningful
variable names.

3.7 The main() Function

Having written and compiled the function square(), we still can't quite
execute it. Every executable program must contain a special function
called main(), which is where program execution begins. The main() func­
tion can call other functions. For example, to invoke square(), you could
write:

www.manaraa.com

3.7 The mainO Function 47

Program
3-2

#include <stdlib.h>

int main(void)
(

extern int square(int);
int solution;

solution = square (5);
exit(O);

This assigns the square of 5 to the variable named solution. The rules
governing a main() function are the same as the rules for other functions.
Note, however, that we don't identify the function's data type and we
don't declare any arguments. This is a convention that we adopt for now.
main() actually does return a value and it takes two arguments. We defer a
discussion of these aspects until Chapter 10.

The exit() function is a runtime library routine that causes a program
to end, returning control to the operating system. If the argument to exit()
is zero, it means that the program is ending normally without errors.
Nonzero arguments indicate abnormal termination of the program. Call­
ing exit() from a main() function is exactly the same as executing a return
statement. That is,

exit (0);

is the same as

return 0;

You should include either exit() or return in every main() function. If
you use exit(), you must also include the stdlib.h header file.

We declare two names in main(). The first is the function square(),
which we are going to call. The special keyword extern indicates that
square() is defined elsewhere, possibly in another source file. The other
variable, solution, is an integer that we use to store the value returned by
square().

The next statement is the one that actually invokes the square() func­
tion. Note that it is an assignment statement, with the right-hand side of
the statement being the function invocation. The argument 5 is placed in
parentheses to indicate that it is the value being passed as an actual argu­
ment to square(). You will recall that square()'s name for this passed ar­
gument is num. The square() function then computes the square of num
and returns it. The return value gets assigned to solution in the main()
function.

www.manaraa.com

48

Bug Alert

Program
3-3

3: C Essentials

No Nested Comments

You cannot place comments within comments to form nested com­
ments. For example,

/* This is an outer comment
*

/* This is an attempted inner ccmnent */
*
* This will be interpreted as code .
*/

C identifies the beginning of a comment by the character sequence''''.
It then strips all characters up to, and including, the end comment se­
quence "" . What's left gets passed to the compiler to be further proc­
essed. In the example above, therefore, the compiler will delete
everything up to the fir t "" sequence, but pass the rest to the compiler.
So the compiler will attempt to process

*
* This will be interpreted as code .
*/

Ot recognizing these lines as valid C statements, the compiler will
issue an error message.

We now have a working program, but it is not particularly useful for a
couple of reasons. One problem with this program is that there is no way
to see the answer. In this simple case, it's obvious that the variable solu­
tion gets the value 25, but suppose we pass square() a larger value whose
square we don't already know. We need to add a statement that prints out
the value of solution so we can see it. There are a number of runtime rou­
tines that can display data on your terminal, but the most versatile IS

printfO. Adding printfO to our program gives us the following program:

#include <stdio .h> /* Header file of printf() */
#include <stdlib . h>

int maine void)
{

extern int square();
int solution;

solution = square(27)i
printf ("The square of 27 is %d\n", solution);
exit (0);

Note that we need to include the header file stdio.h because printfO is
an 110 function. We describe the printfO function in more detail later in

www.manaraa.com

3.7 The mainO Function 49

Program
3-4

this chapter. For now, all you need to know is that %d is a special code
that indicates to the printf() function that the argument to be printed is a
decimal integer. The actual output will be the value stored in solution. The
\n sequence is a special sequence that forces printf() to output a newline
character, causing the cursor to move to the beginning of the next line.

Assuming main() is stored in a source file called getsquare.c, and
square() is located in a file called square.c, you could compile and link this
program with the following command (in a UNIX environment):

$ cc -0 getsquare getsquare.c square.c

To run the program, type getsquare at the prompt:

$ getsquare
The square of 27 is 729
$

The getsquare program still isn't very useful, however, since it can only
print the square of one number. To find out the squares of other numbers,
we would have to edit the source file, change the argument to square(),
and then recompile, relink, and reexecute the program. It would be better
if we could dynamically specify which number we want to square while
gets quare is running. To do this, we need to use another runtime routine
called scanf(). scanf() is the mirror function to printf(). Whereas printf()
outputs the value of a variable, scanf() reads data entered from the key­
board and assigns them to variables.

Adding scanf() to our program, we get:

#include <stdio.h>
#include <stdlib.h>

int maine void)
{

extern int squarer);
int solution;
int input_val;

printf{ "Enter an integer value: " };
scanf ("%d", &input_val);
solution = squarer input_val };
printf ("The square of %d is %d\n", input_val, solution

) ;
exit(0 };

Note that we declare another variable, inpucval, to store the value en­
tered from the keyboard. We then pass this value as the argument to
square(). The expression,

&input_val

means "the memory address of inpucval." We pass the address of in­
pucval so that scan/O can store a value at that address. The & symbol is

www.manaraa.com

50 3: C Essentials

an important C operator that we discuss in more detail in Chapter 4. A
typical execution of gets quare would be:

$ getsquare
Enter an integer value: 8
The square of 8 is 64
$

We can execute this program any number of times, giving it different
input with each execution.

3.8 The printfO Function

The printfO function can take any number of arguments. The first argu­
ment, however, is special. It is called the format string and it specifies how
many data arguments are to follow and how they are to be formatted. The
format string is enclosed in double quotes, and may contain text and for­
mat specifiers. A format specifier is a special character sequence that be­
gins with a percent sign (%) and indicates how to write a single data item.

For example, in the statement

printf ("The value of num is %d", num);

there are two arguments. The first is the format string:

"The value of num is %d"

The second is the data item, in this case a variable called num. The
format string can be broken down further into two parts: a text string

The value of num is

and a format specifier

%d

The %d specifier indicates that the first data item, num, is a decimal in­
teger. There are other specifiers for other types of data. Following is a par­
tiallist:

%c Character data item

%s Null-terminated character array
(string)

%x Hexadecimal integer

%f Floating-point data item

%0 Octal integer

www.manaraa.com

3.8 The printfO Function 51

We describe these specifiers and others in later chapters. In addition to
specifying the type of data to be printed, you can also specify such attrib­
utes as left justification, right justification, padding characters, and
whether a plus sign should be printed for positive numbers. These details
are described in Appendix A.

For now, the only additional thing you need to know about printf() is
that the format string can contain any number of format specifiers, but
there must be a data argument for each one. For example,

1 1
printf("Print three values: %d %d %d", nurnl, nurn2, nurn3);

Note that the first format specifier corresponds to the first data item,
the second specifier to the second data item, and so on. We separate each
specifier by a space so that a space will be printed before each number.
Otherwise the numbers would be printed one after the other without any
separation.

The data items can also be expressions, such as num * num:

printf("The square of %d is %d\n", nurn, nurn*nurn };

The backslash (') followed by n forms a special symbol called an escape
sequence. When escape sequences are sent to an output device, such as a
terminal, they are interpreted as signals that control the format of display.
The \n escape sequence forces the system to output a newline. There are
other escape sequences, which we describe in the next chapter.

3.8.1 Continuation Character

To span a quoted string over more than one line, you can use the con­
tinuation character, which is a backslash. For example, here's a program
that uses the continuation character to print a long string:

int main (void)
{

printf("This string is too long to fit on one \
line, so I need to use the continuation \
character." };

Prior to the ANSI Standard, the continuation character could be used
only to continue character strings. The Standard extended this notion so
that you can now stretch variable names over multiple lines. For the sake
of readability, however, you should use the continuation character spar­
ingly.

www.manaraa.com

52 3: C Essentials

The ANSI Standard supports an alternative notation for extending
strings across multiple lines. With this new notation, you simply divide the
string into two shorter strings:

int main (void)
{

printf("This string is too long to fit on one"
"line, so I divide it into three "
"strings");

As can be seen from this example, the advantage to this approach is
that it allows you to retain indentation. On the other hand, using the con­
tinuation character is more explicit, which also aids readability. Choosing
one method over the other is really a toss-up, but you should be consis­
tent. Once you choose a method, use it everywhere. In this book, we use
the continuation character.

3.9 The scanfO Function

The scanfO function is the mirror image of printfO. Instead of printing
data on the terminal, it reads data entered from the keyboard. The format
of scanfO is similar to print(). Like printfO, scanfO can take any number of
arguments, but the first argument is a format string. scanfO also uses
many of the same format specifiers. The specifier %d, for example, indi­
cates that the value to be read is an integer. The major difference between
scanfO and printf() is that the data item arguments must be lvalues and
they must be preceded by the address of operator &. For example,

scanf ("%d", &num);

directs the system to read integer input from your terminal and store the
value in the variable called num. The ampersand is a special operator that
finds the address of a variable. We discuss it in more detail in the next
chapter.

The best way to learn how to use printfO and scanfO is to experiment
with them. The exercises at the end of this chapter suggest some programs
you can write. You can also look at the complete descriptions of printfO
and scanfO in Appendix A.

3.10 The Preprocessor

You can think of the C preprocessor as a separate program that runs be­
fore the actual compiler. It is automatically executed when you compile a
program, so you don't need to explicitly invoke it. The preprocessor has
its own simple grammar and syntax that are only distantly related to the C

www.manaraa.com

3.10 The Preprocessor 53

language syntax. All preprocessor directives begin with a pound sign (#),
which must be the first nonspace character on the line.

Unlike C statements, a preprocessor directive ends with a newline, not
a semicolon.

We discuss the preprocessor in detail in Chapter 11. For now, we need
only take a closer look at the #include facility, already mentioned in con­
nection with header files, and a new preprocessor command called
#define.

3.10.1 The Include Facility

The preprocessor #include directive causes the compiler to read source text
from another file as well as the file it is currently compiling. In effect, this
enables you to insert the contents of one file into another file before com­
pilation begins, although the original file is not actually altered. This is
especially useful when identical information is to be shared by more than
one source file. Rather than duplicating the information in each file, you
can place all the common information in a single file and then include that
file wherever necessary. Not only does this reduce the amount of typing
required, but it also makes program maintenance easier, because changes
to the shared code need only be made in one place. The #include com­
mand has two forms:

#include <filename>

and

#include "filename"

If the filename is enclosed by angle brackets, the preprocessor looks in
a special place designated by the operating system. This is where all system
include files, such as the header files for the runtime library, are kept. If
the filename is enclosed by double quotes, the preprocessor looks in the
directory containing the source file. If it can't find the include file there, it
searches for the file as if it had been enclosed in angle brackets. By conven­
tion, the names of include files usually end with an .h extension.

Consider what happens when the preprocessor encounters the com­
mand

#include <stdio.h>

www.manaraa.com

54 3: C Essentials

The preprocessor searches in the system-defined directory for a file
called stdio.h, and then replaces the #include command with the contents
of the file. We won't show you the entire stdio.h file because it's long and
complicated and varies from one compiler to another. But a typical section
of the file looks like the following:

FILE *fopen(const char *, const char *);
size_t fread(void *, size_t, size_t, FILE *);
FILE *freopen(const char *, const char *, FILE *);
char *tempnam(char *, char *);
FILE *tmpfile(void);
char *tmpnam(char *);
extern long ftell(FILE *);

These are declarations of functions in the runtime library. As a simpler
example of how the #include directive works, suppose you have a file
called globaCdecs.h, which contains the following:

int global_counter;
char global_char;

Then in a source file you use the #include directive:

#include "global_decs.h"
main()
{

When you compile the program, the preprocessor replaces the #include
directive with the contents of the specified file, so the source file looks like

int global_counter;
char global_char;
main()
{

3.10.2 The #define Directive

Just as it is possible to associate a name with a memory location by de­
claring a variable, it is also possible to associate a name with a constant.
You do this by using a preprocessor directive called #define. For instance,

#define CHARS_PER_WORD 32

binds the name CHARS_PER_ WORD to the constant 32. The symbol
CHARS]ER_ WORD will be replaced by 32 by the compiler. The state­
ments

j = 5 + 32;
j = 5 + CHARS_PER WORD

www.manaraa.com

3.11 Exercises 55

are exactly the same to a compiler, though most humans will prefer the
second line

The rules for naming constants are the same as the rules for naming
variables, but you must be careful not to confuse the two. For example,
having defined CHARS_PER_ WORD as 32, you cannot write

CHARS_PER_WORD = j + 5;

any more than you can write

32 = j + 5;

In both cases, the compiler should issue an error because you are at­
tempting to change the value of a constant. To avoid confusion between
constants and variables, it is a common practice to use all uppercase letters
for constant names and lowercase letters for variable names.

Naming constants has two important benefits. First, it enables you to
give a descriptive name to a nondescript number. For example,

#define MAX_PAGE_WIDTH 80

Now, in your program you can use MAX_PAGE_ WIDTH, which
means something, instead of "80," which doesn't tell you much. Thought­
ful naming of constants will make a program much easier to read. It is
good practice to use names for all constants other than ° and 1.

The other advantage of constant names is that they make a program
easier to change. For example, the maximum page width parameter might
appear dozens of times in a large text formatting program. Suppose that
you want to change the maximum width from 80 to 132. If, instead of
using a constant name, you used the constant 80, you will need to change
80 to 132 wherever it appears and hope that you are changing the right
80's. If you use a constant name, you need only change the definition,

#define MAX_PAGE_WIDTH 132

and recompile.

3.11 Exercises

1. Write a main() routine that prints Hello world.

2. Write a function that returns the cube of its argument. The function
and argument should be declared as ints:

int, cube (num)
int num;

3. Write a function called fourth-pow() that returns the fourth power of
its argument. Use squareO in your solution. Then write a mainO func­
tion that calls fourth-pow().

www.manaraa.com

56 3: C Essentials

4. Write a main() function that reads an integer from the terminal, finds
its cube by calling cube(), and prints the cube.

S. Link main() and cube() together and run them.

6. In what ways does a computer program resemble a living organism?
(See Douglas Hofstadter's Cadel, Escher, Bach for an in-depth discus­
sion of computer and biological hierarchies.)

7. Write pseudocode for a program that strips comments from a C
source file.

8. Which of the following names cannot be used to name variables? Why
are they illegal?

var double_var gg9"-234_4S6
VAR 12fff Im

int @f struct
p.s default p_s

p$s ok structure
p#s not_ok qqqqqqqqqq

double _bufp p?s_2
_12 VOID void
Void voId

9. The following function contains a number of bugs. Find the bugs and
fix them.

maine x)
{

scanf ("How many bugs are in this program?, prob_count
printf (This program has %d problems\n, prob_count);

www.manaraa.com

4
Scalar Data Types

What's in a name? That which we call a rose
By any other name would smell as sweet.

Shakespeare, Romeo and Juliet

The ability to divide data into different types is one of the most important
features of modern programming languages. It enables you to work with
relatively complex objects instead of the more mundane objects that the
computer manipulates at its lowest level. You can deal with integers, char­
acters, and floating-point numbers, all of which are familiar entities. At
the bit and byte level, the computer may not understand these concepts. It
is up to the compiler, therefore, to make sure that the computer handles
bits and bytes in a way consistent with their data type. A data type is
really just an interpretation applied to a string of bits.

The C language offers a small but useful set of data types. There are
eight different types of integers and three types of floating-point objects. In
addition, integer constants can be written in decimal, octal, or hexadeci­
mal notation. These types-integers and floating points-are called arith­
metic types. Together with pointers and enumerated types, they are known
as scalar types because all of the values lie along a linear scale. That is, any
scalar value is either less than, equal to, or greater than any other scalar
value.

In addition to scalar types, there are aggregate types, which are built by
combining one or more scalar types. Aggregate types, which include ar­
rays, structures, and unions, are useful for organizing logically related
variables into physically adjacent groups. There is also one type-void-

www.manaraa.com

58 4: Scalar Data Types

that is neither scalar nor aggregate. Figure 4-1 shows the logical hierarchy
of C data types.

This chapter describes scalar variables and constants and the void type.
Chapters 7 and 9 describe aggregate types.

Data Types

Scalar Types

Figure 4-1: Hierarchy of C data types.

4.1 Declarations

Every variable must be declared before it is used. A declaration provides
the compiler with information about how many bytes should be allocated
and how those bytes should be interpreted. To declare j as an integer, you
would write

int jj

The word int is a reserved word that specifies the integer data type.
There are nine reserved words for scalar data types, as shown in Table 4-
1.

The first five-char, int, float, double, and enum-are basic types. The
others- short, long, signed, and unsigned-are qualifiers that modify a
basic type in some way. You can think of the basic types as nouns and the
qualifiers as adjectives.

As a shorthand, you can declare variables that have the same type in a
single declaration by separating the variable names with commas. You
could declare j and k with

int j, kj

www.manaraa.com

4.1 Declarations

which is the same as

int ji
int ki

59

All the declarations in a block must appear before any executable
statements. The order in which they are declared, however, usually makes
no difference. For instance,

int j, ki
float x, y, Zi

is functionally the same as

float Xi
int ki
int j i
float z, Yi

It is usually a good idea to group declarations of the same type to­

gether for easy reference.
All of our examples so far have used single-character variable names,

which seems to contradict our earlier advice about using meaningful
names. However, single-character names are acceptable in certain circum­
stances, particularly in short example programs and test programs. To
make them a bit more meaningful, there is a convention borrowed from
FORTRAN. The names i, j, k, m, and n are generally used for integer
counters and temporary variables; x, y, and z are used for floating-point
temporary variables; and c is used for temporary character variables. You
should never use the single-character names I (el) or 0 (oh), since they are
easily confused with the digits 1 (one) and 0 (zero).

Table 4-1: Scalar Type Keywords.

char

int

float

double

enum

short

long

signed

unsigned

4.1.1 Declaring the Return Type of a Function

Just as you can declare the data type of a variable, you can also declare the
type of value returned by a function. The following declares foo() to be a
function that returns a value of type float:

www.manaraa.com

60

float fool void)
int arg;
{

4: Scalar Data Types

Unlike other variables, functions have a default return type (int) if you
do not explicitly give them a return type. For example,

foo (void)
{

declares a function {ooO whose return type is into Many programmers use
this convention, although we recommend that you explicitly enter the int
type to make the program more readable:

int foo (void)
{

Some programmers also omit the return type for functions that return
no value. This was acceptable in older compilers that did not support an­
other syntax for declaring such functions. Modern C compilers, however,
support the void type, which allows you to explicitly declare that a func­
tion does not return a value:

void foo (void)
{

See Section 0 for more about void.

4.1.2 Different Types of Integers

Although int is the basic integer data type, it is also the least descriptive.
On all machines, an int is treated as an integer in that it cannot hold frac­
tional values, but it has different sizes on different machines. Some com­
pilers allocate four bytes for an int whereas others allocate only two bytes.
(Still others allocate three bytes or just one byte.) In addition, the size of a
byte is not constant. On most machines, a byte is eight bits, but there are
even exceptions to this rule.

The only requirements that the ANSI Standard makes is that a byte
must be at least eight bits long, and that ints must be at least 16 bits long
and must represent the "natural" size for the computer. By natural, they
mean the number of bits that the CPU usually handles in a single instruc-

www.manaraa.com

4.1 Declarations 61

tion. In our examples throughout the book, we assume that a byte is eight
bits and that an int is four bytes.

If you don't care how many bytes are allocated, you can use into If the
size matters, however, you should use one of the size qualifiers, short or
long. On most machines, a short int is two bytes and a long int is four
bytes. To declare j as a short int and k as a long int, you would write

short int j;
long int k;

The compiler would allocate at least two bytes for j and at least four
for k. Note that since the number of bytes is different, the range of values
is different, as shown in Table 4-2. If you need to store values less than
-32,768 or greater than 32,767, you should obviously use a long into

The compiler is smart enough to infer int even if you leave it out. You
could write, for example,

short j;
long k;

In the interest of brevity, most C programmers use this shorthand.
The number of bits used to represent an integer type determines the

range of values that can be stored in that type. Consider, for example, a
16-bit short into Each bit has a value of 2 to the power of n where n repre­
sents the position of the bit:

For instance, the decimal value 9 would be represented by setting bits 0
and 3:

o 0 0 0 0 0 0 0 0 0 0 010 0 1

2' + 2° = 8 + 1 = 9

To represent negative numbers, most computers use two's complement
notation. In two's complement notation, the leftmost bit (called the most
significant bit because it represents the largest value) is a sign bit. If it is set
to one, the number is negative; if it's zero, the number is positive. To ne­
gate a binary number, you must first complement all the bits (change ze­
roes to ones, and ones to zeroes), and then add 1 to it. To get -9, for
instance, you would first complement the bits, giving you

1 1 1 1 1 1 1 1 1 1 1 1 0 110

Then you would add one:

1 1 1 1 1 1 1 1 1 1 110 1 1 1

There is a less popular notation called one's complement, in which you
simply complement the bits to negate a number, without adding one.

www.manaraa.com

62 4: Scalar Data Types

While this notation may seem simpler, it has several drawbacks, one of
which is that there are two representations for zero:

o 0 0 0 0 0 0 000 0 0 0 0 0 0

and

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

In two's complement notation, there is only one representation for zero
because after complementing the bits you add one, which zeroes all the
bits again.

One of the interesting, and valuable, features of two's complement no­
tation is that -1 is represented by all bits being set to one. It also follows
that the largest positive number that can be represented occurs when all
but the sign bit are set. This value is rl-1 where n is the number of bits.
The largest negative value is _2n-l.

shows sizes and ranges of integer types for our machine. (See Appen­
dix C for the minimum ranges that must be supported by an
ANSI-conforming C compiler.)

Table 4-2: Size and Range of Integer Types on Our Machine.

Type Size (in bytes) Value Range

int 4 _231 to 231 _1

short int 2 _215 to 215_1

long int 4 _231 to 231 _1

unsigned short int 2 o to 216_1

unsigned long int 4 o to 232_1

signed char 1 _27 to 27_1

unsigned char 1 Oto28-1

4.1.3 Unsigned Integers

There are a number of instances where a variable will have to hold only
nonnegative values. For instance, variables that are used to count things
are often restricted to nonnegative numbers. The C language allows you to
declare that a variable is nonnegative only (or unsigned), thereby doubling
its positive range (the most significant bit will not be a sign bit). A signed
short int has a range of -32,767 to 32,767, whereas an unsigned short int
has a range of 0 to 65,535.

www.manaraa.com

4.1 Declarations 63

To declare an integer variable as being nonnegative only, use the un-
signed qualifier, as in

unsigned int k;
unsigned short ffi;
unsigned long n;

You can also use unsigned by itself, as in

unsigned p;

which is the same as unsigned into

4.1.4 Signed Integers

The ANSI Standard recognizes a keyword called signed, which specifically
makes a variable capable of holding negative as well as nonnegative val­
ues. In most cases, variables are signed by default, so that the signed key­
word is superfluous. The one exception is with the char type, which can be
either signed or unsigned by default, depending on the whims of the com­
piler developers. Most compilers use signed char as the default.

4.1.5 Characters and Integers

Most programming languages make a distinction between numeric and
character data. The number "5" is a number whereas the letter "A" is a
character. In reality, though, even characters are stored in the computer as
numbers. Every character has a unique numeric code. There are various
codes, two of the most common being ASCII, which stands for American
Standard Code for Information Interchange, and EBCDIC (Extended Bi­
nary-Coded Decimal Interchange Code), which is what IBM uses on its
larger computers. Appendix E contains a full list of the ASCII character
set. The examples in this section assume an ASCII code set because it is the
most prevalent in C implementations. For most codes, all character values
lie within the range 0 through 255, which means that a character can be
represented in a single byte. (Character sets for certain languages, such as
Kanji, require more than 256 character codes., To represent text using
these character sets, you can take advantage of ANSI C's multibyte char­
acter feature. See Section 4.1.6 for more information.)

In C, the distinction between characters and numbers is blurred. There
is a data type called char, but it is really just a I-byte integer value that
can be used to hold either characters or numbers. For instance, after
making the declaration

char c;

you can make either of the following assignments:

c = 'A';
c = 65;

www.manaraa.com

64

Program
4-1

4: Scalar Data Types

In both cases, the decimal value 65 is loaded into the variable c since
65 is the ASCII code for the letter 'A'. Note that character constants are
enclosed in single quotes. The quotes tell the compiler to get the numeric
code value of the character. For instance, in the following example, a gets
the value 5, whereas b gets the value 53 because that is the ASCII code for
the character" 5".

char a , b;
a = 5;
b = '5';

The following program reads a character from a terminal and then dis­
plays the code value of the character. The %c format in the scanfO call
indicates that the data item to be read is a character. The %d format in the
printfO call tells the function to output the character in its integer form.

/* Print the numeric code value of a character *1

#include <stdio.h>

int main(void
{

char Chi

printf("Enter a character:");
scanf("%c", &ch);
printf("Its numeric code value is: %d\n", ch);
exit (0);

Because chars are treated as small integers, you can perform arithmetic
operations on them. In the following lines, j gets the value 131 since 'A'
equals 65 and 'B' equals 66.

int j;
j = 'A' + 'B';

In the ASCII character set, character codes are ordered alphabetically.
For example, an uppercase 'A', for example, is 65, a 'B' is 66, ... a 'Z' is
90. Lowercase letters start at 97 and run through 122. This makes it fairly
easy to implement a function that changes a character from uppercase to
lowercase:

char to_lower(char ch
{

return ch +32;

However, if you assume an ASCII character set, and add or subtract
32, your program will fail when you run it on a machine that uses
EBCDIC or some other character code. To avoid this problem, the C run­
time library contains two functions called toupper() and tolower() that
change a character's case. These functions, described in Appendix A, are

www.manaraa.com

4.2 Different Kinds of Integer Constants 65

guaranteed to work the same in all implementations. For maximum port­
ability, therefore, you should use these functions rather than writing your
own.

4.1.6 Multibyte Characters

The English character set contains only 26 letters. Even when you consider
uppercase and lowercase letters, numerals, and punctuation, the total
number of symbols one needs to express something in the English lan­
guage is relatively small. The ASCII character codes define 128 symbols,
which is quite sufficient. Every English character, therefore, can fit in a
single byte because a byte allows for 256 unique codes.

Other languages, however, have much larger character sets. The writ­
ten Japanese language, for example, contains thousands of characters.
Obviously, one byte is not sufficient to uniquely represent each character.

To allow for programming in languages other than English, the ANSI
Standard supports multibyte characters. When multi byte characters are
activated, the runtime environment interprets two or more successive bytes
as a single character. The actual number of bytes used and the character
codes depend on the implementation.

For more information about multi byte characters, refer to the appro­
priate runtime routines in Appendix A. In particular, Sections A.8 and
A.16 describe how to use multi byte characters.

4.2 Different Kinds of Integer Constants

We have already seen a few integer constants, 5, 10, and 2. These are
called decimal constants because they represent decimal numbers. You can
also write octal and hexadecimal constants. An octal constant is written
by preceding the octal value with the digit zero. A hexadecimal constant is
written by preceding the value with a zero and an x or X. Table 4-3 shows
some decimal constants and their octal and hexadecimal equivalents.

Note that negative numbers are preceded with a minus sign just as in
algebraic notation. (Strictly speaking, negative numbers are really expres­
sions, not constants.) Nonnegative numbers may be preceded by an op­
tional plus sign. (The plus sign is an added feature of the ANSI Standard
that has a nonintuitive meaning. We discuss its impact in Chapter 6.) Note
also that you cannot include a comma or a decimal point in an integer
constant.

www.manaraa.com

66

Program
4-2

4: Scalar Data Types

Table 4-3: Integer Constants.

Decimal Odal Hexadecimal

3 003 Ox3

8 010 Ox8

15 017 OxF

16 020 Ox10

21 025 Ox15

-87 -0127 -Ox57

187 0273 OxBB

255 0377 Oxff

An octal constant cannot contain the digits 8 and 9 because they are
not part of the octal number set. (This restriction was not present in the
K&R standard.)

The scanf() and printf() functions have format specifiers for reading
and writing octal and hexadecimal numbers. For octal numbers, the for­
mat specifier is 0; for hexadecimal numbers the format specifier is x. The
following program reads a hexadecimal number (with or without the Ox
prefix) from the terminal and prints its decimal and octal equivalents.

/* Print the decimal and octal equivalents of a
* hexadecimal constant.
*/

#include <stdio . h>
#include <stdlib . h>

int main(void
(

int nurn;

printf("Enter a hexadecimal constant: ");
scanf ("%x", &nurn);
printf("The decimal equivalent of %x is: %d\n", num,

num) ;
printf("The octal equivalent of %x is: %o\n", nurn, num
exit (0);

The number of bytes allocated for an integer constant varies from ma­
chine to machine, depending on the relative sizes of the integer types. In
general, an integer constant has type int if its value can fit in an into Oth­
erwise, it has type long into More precisely, the ANSI Standard states that

www.manaraa.com

4.2 Different Kinds of Integer Constants 67

the type of an integer constant is the first in the corresponding list in
which its value can be represented. The list is shown in Table 4-4.

If a constant is too large to fit into the longest type in its list, the results
are unpredictable. Many compilers simply truncate the value and then
load it into memory, whereas others produce an error message.

It is also possible to specifically designate that a constant have type
long int by appending an I or L to the constant (we recommend that you
use an uppercase L since it is easy to confuse a lowercase I with the digit
1). For example,

55L
0777776L
-OXAAAB32lL

Note that octal and hexadecimal constants may also be long.

Table 4-4: Types of Integer Constants.

Form of Constant

Unsuffixed decimal

Unsuffixed octal or
hexadecimal

Suffixed by u or U

Suffixed by I or L

4.2.1 Unsigned Constants

List of Possible Types

int, long int, unsigned long int

int, unsigned int, long int, unsigned
long int

unsigned int, unsigned long int

long int, unsigned long int

The ANSI Standard allows you to apply the unsigned qualifier to a con­
stant. This is done by appending a u or U to the constant, as in

55u
077743U
Oxfffu

4.2.2 Escape Character Sequences

We have already used the \n escape sequence, which represents a newline.
The full list of escape sequences is shown in Table 4-5.

In addition to the escape sequences listed in Table 4-5, C also supports
escape character sequences of the form,

\octal-number

and

\hex-number

www.manaraa.com

68 4: Scalar Data Types

which translates into the character represented by the octal or hexadeci­
mal number. For example, if ASCII representations are being used, the
letter 'a' may be written as '\141' and 'Z' as '\132'. This syntax is most
frequently used to represent the null character as '\0'. This is exactly
equivalent to the numeric constant zero (0). Note that the octal number
does not include the zero prefix as it would for a normal octal constant.
To specify a hexadecimal number, you should also leave out the zero so
that the prefix is an x (uppercase X is not allowed in this context).

Table 4-5: C Escape Sequences.

Escape
Sequence Name Description

\a alert Produces an audible or visible alert
signal.

\b backspace Moves the cursor back one space.

\f form feed Moves the cursor to the next logical
page.

\n newline Prints a newline.

\r carriage return Prints a carriage return.

\t horizontal tab Prints a horizontal tab.

\v vertical tab Prints a vertical tab.

\\ backslash Prints a backslash.

\' single quote Prints a single quote.

\" double quote Prints a double quote.

\? question mark Prints a question mark.

4.2.3 Trigraph Sequences

Because certain characters used by the C language are not available on
every computer keyboard, the ANSI Standard adopted a new format for
representing these characters. Trigraph sequences consist of two question
marks followed by a third character. During the translation stage, the
compiler converts these sequences into a single character, as shown in
Table 4-6. For example, the following line of source code:

printf ("Print a newline ?? jn");

becomes

printf("Print a newline \n");

www.manaraa.com

4.3 Floating-Paint Types 69

Note that this feature is not available on older compilers and may, in
fact, break existing code that accidentally contains trigraph sequences.

Table 4-6: Trigraph Sequences.

Trigraph Sequence Resulting Charader

??= # (pound sign)

? ?([(left bracket)

? ?/ \ (backlash)

? ?)] (right bracket)

??' " (caret)

??< { (left brace)

? ?! I (bar)

??> } (right brace)

? ?- - (tilde)

4.3 Floating-Point Types

Integers are fine for many occasions but they are inadequate for repre­
senting very large numbers and fractions. For this, you need floating-point
types. There are two ways to write floating-point constants, the simplest
being to place a decimal point in the number. For example,

0.356
5.0
0.000001
.7
7.

are all legal examples of floating-point constants. To declare a variable
capable of holding one of these values, you use the float, double, or long
double keywords. For example,

float pii
double pi_squaredi
long double pi_cubedi
pi = 3.141i
pi_squared = pi * pii
pi_cubed = pi * pi * pii

The word double stands for double-precision, because many machines
are capable of representing about twice as much precision as a float. The
precision refers to the number of decimal places that can be represented.
On many machines, a double also takes up twice as much memory. A float

www.manaraa.com

70

Program
4-3

Program
4-4

4: Scalar Data Types

generally requires four bytes, and a double generally requires eight bytes,
although these sizes are not strict requirements. long doubles are intended
to provide even greater range and precision than doubles. On many ma­
chines, however, long double and double are synonymous. The long dou­
ble declaration was added by the ANSI Committee because some
architectures support more than two floating types.

The internal representation of floating-point values is incorporated into
the hardware architecture of each computer and is one of the least stan­
dardized aspects of computers. You should read the documentation for
your particular compiler to discover the range and precision of floats,
doubles and long doubles (these limits are also listed in the dimits.h>
header file that comes with the ANSI runtime library).

The following function takes a double value as an argument that repre­
sents a temperature in Fahrenheit and converts it to Celsius.

/* convert a float value from Fahrenheit to Celsius
*/

double fahrenheit_to_celsius (double temp_fahrenheit
{

double temp_celsius;
temp_celsius = (temp_fahrenheit· 32.0) *

100 . 0/(212.0 - 32 . 0);
return temp_celsius ;

The following function computes the area of a circle, given a radius.

/* Given the radius, find the area of a circle . */

#define PI 3 . 14159

float area_of_circle(float radius)
{

float area;
area = PI*radius*radius;
return area;

Note that we use the #define feature to create a constant called PI. This
is better than embedding the numeric constant in the code since the name
PI is more meaningful than the string of digits 3.14159.

4.4 Scientific Notation

Scientific notation is a useful shorthand for writing lengthy floating-point
values.

www.manaraa.com

4.5 Initialization 71

In scientific notation, a value consists of two parts: a number called the
mantissa followed by a power of 10 called the characteristic (or expo­
nent). The letter e or E, standing for exponent, is used to separate the two
parts. The floating-point constant 3e2, for instance, is interpreted as
3*102, or 300. Likewise, the value -2.Se-4 is interpreted as -2.5* 10-4, or
-0.00025. The examples in Table 4-7 show some legal and illegal float­
ing-point constants.

Table 4-7: Legal and Illegal Floating-Paint Constants.

Legal

3.141

.333333333
3

0.3

3e2

5E-5

3.7e12

Illegal

35

3,500.45

4E

4e3.6

No decimal point or exponent

Commas are illegal

The exponent sign must be followed
by a number

The exponent value must be an inte­
ger

4.4.1 float and long double Constants

By default, all floating-point constants have type double. The ANSI Stan­
dard, however, allows you to override this rule by appending an for F to
the constant to make it float, or an I or L to make it long double. For ex­
ample,

3.5 /* A double constant */
3.5f /* A float constant */
3.5e3L /* A long double */

These suffixes are useful for forcing floating-point expressions to be
computed with either single or double precision, as explained in Section
4.6.4.

4.5 Initialization

A declaration allocates memory for a variable, but it does not necessarily
store an initial value at the location (fixed duration variables, discussed in
Chapter 8, are an exception). If you read the value of such a variable be-

www.manaraa.com

72

Program
4-5

4: Scalar Data Types

fore making an explicit assignment, therefore, the results are unpredict­
able. For example, try the following program:

#include <stdio.h>
#include <stdlib.h>

int maine void
{

int x;
printf("The value of x is: %d\n", x):
exi t (0):

The output when you execute this program could be just about any­
thing since x gets the value of whatever is left over in memory from the
previous program execution. Because you often want a variable to start
with a particular value, the C language provides a special syntax for ini­
tializing a variable. Essentially, you just include an assignment expression
after the variable name in a declaration. For example,

char ch = 'A':

allocates one byte for ch, and also assigns the character 'A' to it. The ini­
tialization is really just a shorthand for combining a declaration statement
and an assignment statement. The previous initialization, for instance, is
exactly the same as:

char ch;
ch = 'A':

4.6 Mixing Types

The C language allows you to mix arithmetic types in expressions with
few restrictions. For example, you can write:

num = 3 * 2.1:

even though the expression on the right-hand side of the assignment is a
mixture of two types, an int and a double. Also, the data type of num
could be any scalar data type except a pointer.

To make sense out of an expression with mixed types, C performs con­
versions automatically. These implicit conversions make the programmer's
job easier but put a greater burden on the compiler because it is responsi­
ble for reconciling mixed types. This can be dangerous because the com­
piler may make conversions that are unexpected. For example, the
expression

3.0 + 1/2

www.manaraa.com

4.6 Mixing Types 73

does not evaluate to 3.5 as you might expect. Instead, it evaluates to 3.0.
Implicit conversions, sometimes called quiet conversions or automatic

conversions, occur under four circumstances:

1. In assignment statements, the value on the right side of the assign­
ment is converted to the data type of the variable on the left side.
These are called assignment conversions.

2. Whenever a char or short int appears in an expression, it is con­
verted to an into unsigned chars and unsigned shorts are converted
to int if the int can represent their value; otherwise they are con­
verted to unsigned int (see Section 4.6.3). These are called integral
widening conversions.

3. In an arithmetic expression, objects are converted to conform to
the conversion rules of the operator.

4. In certain situations, arguments to functions are converted. This
type of conversion is described in detail in later chapters.

As an example of the first type of conversion, suppose j is an int in the
following statement:

j = 2.6;

Before assigning the double constant to j, the compiler converts it to an
int, giving it an integral value of 2. Note that the compiler truncates the
fractional part rather than rounding to the closest integer.

The second type of implicit conversion, called integral widening or in­
tegral promotion, is almost always invisible.

To understand the third type of implicit conversion, we first need to
describe briefly how the compiler processes expressions. The discussion
that follows is only cursory-we describe expressions in detail in Chapter
6.

4.6.1 Implicit Conversions in Expressions

When the compiler encounters an expression, it divides it into subexpres­
sions, where each subexpression consists of one operator and one or more
objects, called operands, that are bound to the operator. For example, the
expression

-3 / 4 + 2.5

contains three operators: -, I, and +. The operand to - is 3; there are two
operands to I, -3 and 4; and there are two operands to +, -3/4 and 2.5.

The minus operator is said to be a unary operator because it takes just
one operand, whereas the division and addition operators are binary op­
erators. Each operator has its own rules for operand type agreement, but
most binary operators require both operands to have the same type. If the
types differ, the compiler converts one of the operands to agree with the

www.manaraa.com

74 4: Scalar Data Types

other one. To decide which operand to convert, the compiler resorts to the
hierarchy of data types shown in Figure 4-2 and converts the "lower" type
to the "higher" type. For example,

1 + 2.5

involves two types, an int and a double. Before evaluating it, the compiler
converts the int into a double because double is higher than int in the type
hierarchy. The conversion from an int to a double does not usually affect
the result in any way. It is as if the expression were written as:

1.0 + 2.5

long double

double

float

unsigned long int

long int

unsigned i

int

Figure 4-2: Hierarchy of C scalar data types.

The rules for implicit conversions in expressions can be summarized as
follows. Note that these conversions occur after all integral widening con­
versions have taken place.

• If a pair of operands contains a long double, the other value is
converted to a long double.

• Otherwise, if one of the operands is a double, the other is con­
verted to a double.

• Otherwise, if one of the operands is a float, the other is converted
to a float.

• Otherwise, if one of the operands is an unsigned long int, the other
is converted to an unsigned long into

www.manaraa.com

4.6 Mixing Types 75

Program
4-6

• Otherwise, if one of the operands is a long int, then the other is
converted to a long into

• Otherwise, if one of the operands is an unsigned int, then the other
is converted to an unsigned into

In general, most implicit conversions are invisible. They occur without
any obvious effect. The following sections describe implicit conversions in
more detail.

4.6.2 Mixing Integers

There are four possible sizes of integers-char, short, int, and long-and
they may be mixed freely in an expression. Due to the integral widening
rules, the compiler converts chars and shorts to ints before evaluating an
expression. This is why Figure 4-2 shows int at the bottom of the inverted
pyramid-all smaller integer types are converted to int or unsigned int
before an expression is evaluated. For example, in the following program,
c and j are expanded to ints before the arithmetic expression is evaluated.
The constant 8 is already an int so it does not need to be converted.

#include <stdlib.h>

int main(void
{

char c = 5;
short j = 6;
int k = 7;

k = c+j+8;
exi t (0);

To convert a short 5 to an int, all that is required is to add 2 additional
bytes of zeroes. The short variable with value 5 would be stored in binary
form:

00000000 00000101

After converting it to a four-byte int, its representation is

00000000 00000000 00000000 000000101

Clearly, this does not present any problems because the object retains
its value of 5. For negative values, the process is slightly more complicated
because the compiler must ensure that the converted value is also negative.
It does this by filling the additional bytes with ones rather than zeroes.
This is known as sign extension. For example, the short value -5 is repre­
sented in two's complement notation as

11111111 11111011

www.manaraa.com

76 4: Scalar Data Types

To convert it to a long int whose value is -5, the compiler adds two
bytes filled with ones:

11111111 11111111 11111111 11111011

Integral widening conversions are almost always innocuous. Problems
arise, however, when an implicit conversion shortens an object. This hap­
pens only in assignment conversions. For example, suppose c is a char, and
you make the assignment

c = 882;

The binary representation of 882 is

00000011 01110010

It requires two bytes of storage, but the variable c has only one byte
allocated for it, so the two upper bits don't get assigned to c. This is
known as overflow and the result is not defined by the ANSI Standard for
signed types.

Usually, a compiler simply ignores the extra byte, so c would be as­
signed the rightmost byte:

01110010

This would erroneously give c the value of 114. It is important, there­
fore, to make sure that you do not exceed the size limits when you assign
values to variables. The principle illustrated for chars also applies to
shorts, ints, and long ints. For unsigned types, however, C has well-defined
rules for dealing with overflow conditions. When an integer value x is
converted to a smaller unsigned integer type, the result is the nonnegative
remainder of

x / (U_MAX+1)

where U_MAX is the largest number that can be represented in the shorter
unsigned type. For example, if j is an unsigned short, which is two bytes,
then the assignment

j = 71124;

assigns to j the remainder of

71124 / (65535+1)

The remainder is 5588. Note that for nonnegative numbers, and for
negative numbers represented in two's complement notation, this is the
same result that you would obtain by ignoring the extra bytes.

4.6.3 Unsigned Conversions

Prior to the ANSI Standard, there was no agreed-upon method for pro­
moting unsigned chars and unsigned shorts. Should they be widened to
ints or to unsigned ints? There was also confusion about converting oper-

www.manaraa.com

4.6 Mixing Types 77

ands when one was a long unsigned integer and the other was a short
signed integer. Should the short signed integer be widened to an unsigned
int, making the result unsigned, or should it be converted to a signed int,
making the result a signed integer?

Most compilers converted unsigned chars and unsigned shorts to un­
signed ints, figuring that the unsigned quality was too important to con­
vert away. Likewise, when signed and unsigned objects met in expressions,
the result was always unsigned. But this sign-preserving strategy some­
times produces strange results.

For example, if a is an unsigned short whose value is 2, then the ex­
pressIOn

a - 3

evaluates to a very large unsigned value rather than the signed value of -1.
To avoid this problem, the ANSI Committee adopted a different con­

version method, known as value-preserving. This method converts un­
signed chars and unsigned shorts to int, assuming that the int type is larger
than unsigned char and unsigned short, respectively. If int is not larger, the
object is converted to unsigned into Assuming 16-bit shorts and 32-bit ints
in the previous example, a would be converted to int rather than unsigned
int, so the result of the expression would be -1.

Note that the difference between sign-preserving and value-preserving
rules becomes manifest only when an unsigned type is shorter than an into
If both operands are unsigned ints, the result is unsigned, so that the ex­
pressIOn

2u - 3u

always evaluates to a large unsigned value.

4.6.4 Mixing Floating-Point Values

There are three types of floating-point values-float, double, and long
double. There is no difficulty with mixing them in an expression. After
dividing the expression into subexpressions, the compiler widens the
smaller object of each binary pair to match the wider object. If, for exam­
ple, a binary expression contains a float and a double, the float would be
converted to double.

This would not affect their value in any way and would go unnoticed.
It should be pointed out, however, that many computers perform arithme­
tic with floats much faster than with doubles and long doubles. You
should use these larger types only if you need the greater range or preci­
sion.

As is the case with mixing integers, the problem with floating-point
conversions occurs when you assign a larger type to a smaller type. There
are two potential problems. One is the loss of precision, and the other is

www.manaraa.com

78 4: Scalar Data Types

an overflow condition. Suppose that on your computer a double can rep­
resent 10 decimal places and a float can represent only 6 decimal places. If
f is a float variable, and you make the assignment '

f = 1.0123456789

the computer rounds the double constant value before assigning it to f.
The value actually assigned to f, therefore, might be 1.012346 (if floats are
only 32 bits long). This probably will not cause any problems unless your
program requires great accuracy. If you need more accuracy, you should
use double or long double variables, not floats.

A more serious problem occurs when the value being assigned is too
large to be represented in the variable. For example, the largest positive
number representable by a float might be 2e38 (the actual ranges vary
from computer to computer). What happens if you try to execute the fol­
lowing assignment?

f = 2e40;

The behavior is not defined by the ANSI Standard, but on some com­
puters this statement would produce a runtime error. A runtime error is an
error that occurs while the program is actually executing, as opposed to
errors that occur when you compile the program (called compile-time er­
rors). Runtime errors are particularly difficult to recover from, so you
should go to great pains to avoid them. If there is any chance that an as­
signment statement will cause a floating-point overflow, you should use a
larger floating-point type.

4.6.5 Mixing Integers with Floating-Point Values

It is perfectly legal to mix integers and floating-point values in an expres­
sion, to assign a floating-point value to an integer variable, or to assign an
integer value to a floating-point variable. The simplest case is assignment
of an integer to a floating-point variable. In this case, the integer value is
implicitly converted to a floating-point type. If the floating-point type is
capable of representing the integer, there is no change in value. If f is a
double, the assignment

f = 10;

is executed as if it had been written

f = 10.0;

This conversion is invisible. There are cases, however, where a float­
ing-point type is not capable of exactly representing all integer values.
Even though the range of floating-point values is generally greater than the
range of integer values, the precision may not be as good for large num­
bers. In these instances, conversion of an integer to a floating-point value

www.manaraa.com

4.6 Mixing Types 79

Program
4-7

may result in a loss of precision. For example, try running the following
example on your computer.

#include <stdio.h>
#include <stdlib.h>

int maine void
{

long int j = 2147483600;
float X;

X = j;
printf("j is %d\nx is %10£\n", j, x l;
exi t (0 l;

The case of mixing integer and floating-point values in expressions is
similar. The compiler converts all integers into the largest floating-point
type present. If j is an int and f is a float, the expression

f + j

would cause j to be quietly converted to a float. In the expression

f + j + 2.5

both f and j would be converted to doubles because the constant 2.5 is a
double.

The most risky mixture of integer and floating-point values is the case
where a floating-point value is assigned to an integer variable. First, the
fractional part is discarded. Then, if the resulting integer can fit in the in­
teger variable, the assignment is made. In the following statement, assum­
ing j is an int, the double value 2.5 is converted to the int value 2 before it
is assigned.

j = 2.5;

This causes a loss of precision that could have a dramatic impact on
your program. The same truncation process occurs for negative values.
After the assignment

j = -5.8;

the value of j is -5.
An equally serious situation occurs when the floating-point value can­

not fit in an integer. For example,

j = 999999999999.888888

This causes an overflow condition that may halt program execution. As
a general rule, it is a good idea to keep floating-point and integer values
separate unless you have a good reason for mixing them.

www.manaraa.com

80

Bug Alert

4: Scalar Data Types

Mixing Signed and Unsigned Types

The only difference between signed and unsigned integer types is the
way they are interpreted. They occupy the same amount of storage. For
example, a signed char with bit pattern

11101010

has a decimal value of -22, assuming two's complement notation. An
unsigned char with the arne binary representation has a decimal value
of 234. A problem arises when you mix a signed type with an unsigned
type. For example, what is the value of this expression?

lOu - 15

One might expect the result to be -5, but this is not the case. The
ANSI Standard states that if one of the operands of a binary expression
has type unsigned int and the other operand has type int, the int object
is converted to unsigned int, and the result is unsigned. Using this rule,
which is described in more detail in Section 4.6.3, the value of the ex­
pression shown above would be 4,294,967,291 (assuming the machine
has 4-byte ints and uses two's complement notation). This value is de­
rived from the same bit pattern used to represent -5.

In most ca es, the conversion from signed to unsigned does not cause
any problems and goes unnoticed. Where you need to be careful is when
you use an unsigned expression to control program flow. Although the
subject of program flow is discussed in the next chapter, the following
example should be clear.

#inc1ude <stdlib.h>

int main(void
{

unsigned jj;
int k;

if (jj-k < 0) /* This is a compile-time bug. */
faa () ;

exi t (0);

Translated into English, the program states: "if jj minus k is less
than zero, call the (000 function; otherwise, end the program." How­
ever, because of unsigned conversion rules, the expression ii - k will
never be less than zero. This is obviously not what is intended by the
programmer. Good compilers are able to diagnose these bugs and issue
a warning message.

www.manaraa.com

4.7 Explicit Conversions-Casts 81

4.7 Explicit Conversions-Casts

The previous section describes quiet conversions that the C language per­
forms under certain circumstances. It is also possible to explicitly convert a
value to a different type. Explicit conversion is called casting and is per­
formed with a construct called a cast. To cast an expression, enter the tar­
get data type enclosed in parentheses directly before the expression. For
example,

j = (float) 2;

converts the integer 2 to a float before assigning it to j. Of course, if j is an
integer, the compiler would implicitly convert the value back to an integer
before making the assignment.

Casting is a useful operation in a number of diverse situations. Con-
sider, for example, the following situation:

int j = 2, k = 3;
float f;
f = k/j;

At first glance, it might appear that the f gets assigned the value 1.5.
However, a closer look reveals that f is actually assigned the value 1.0.
This is because the expression

k/j

contains only ints, so there is no reason to "promote" either variable to a
floating-point type. The result of an integer expression is always an inte­
ger, so the true value 1.5 is truncated to the integer value 1. Then, because
it is being assigned to a floating-point variable, the value 1 is converted to
1.0. One way to avoid this problem is to cast either, or both, of the integer
variables to floats. For instance,

f = (float) j/k;

This explicitly converts j to a float. Then the implicit conversion rules
come into play. Because j has been converted to a float, the system auto­
matically converts k to a float as well. The result of an expression con­
taining two floats is a float, so f gets assigned the true expression value,
which is 1.5.

4.8 Enumeration Types

In addition to integer, floating-point, and pointer types, the scalar types
also include enumeration types. Other computer languages, such as Pascal,
also have enumeration types that enable you to declare variables and the
set of named constants that can be legally stored in the variable.

www.manaraa.com

82 4: Scalar Data Types

Enumeration types are particularly useful when you want to create a
unique set of values that may be associated with a variable. The compiler
reports an error if you attempt to assign a value that's not part of the de­
clared set of legal values to an enum variable.

In the following example, we declare two enumeration variables called
color and intensity. color can be assigned one of four constant values: red,
blue, green, and yellow. intensity can be assigned one of three constant
values: bright, medium, or dark.

enum { red, blue, green, yellow } color;
enum { bright, medium, dark } intensity;

As shown in our examples, the syntax for declaring enumeration types
is to start with the enum keyword followed by the list of constant names
enclosed in braces, followed by the names of the enum variables. There is
another syntax described in Section 9.4 that is slightly more complex.

Because enumeration types were not part of the original K&R stan­
dard, their implementation varies from one C compiler to another. Most C
compilers issue warning messages when an enum type conflict occurs, al­
though the warning is not required by the ANSI Standard. (In fact, the
Standard prohibits compilers from halting compilation due to enum type
conflicts.) A good compiler, however, would issue warnings for all of the
type conflicts and misleading usages shown below:

color = yellow; /* OK */
color = bright; /* type conflict */
intensity = bright; /* OK */
intensity = blue; /* type conflict */
color = 1; /* type conflict */
color = blue + green; /* misleading usage */

Constant names in an enum declaration receive a default integer value
based on their position in the enumeration list. In most cases, the integer
value is not important because you are treating the enumeration as a
unique value. Nevertheless, it's helpful to know how the compiler is stor­
ing the values.

The default values start at zero and go up by one with each new name.
In the declaration of color, for instance, red, blue, green, and yellow repre­
sent the integer values 0, 1,2, and 3, respectively.

You can override these default values by specifying other values. If you
do specify a value, all subsequent default values begin at one more than
the last defined value. For example,

enum { APPLES, ORANGES = 10, LEMONS, GRAPES = -5,
MELONS} ;

is the same as

enum { APPLES = 0, ORANGES = 10, LEMONS = 11,
GRAPES = -5, MELONS = -4 };

Note that the assigned values need not be in ascending order, although
for readability it is a good idea to write them that way.

www.manaraa.com

4.9 The void Data Type 83

Bug Alert

The compiler need only allocate as much memory as is necessary for an
enum value. In our color example, for instance, a good compiler will real­
ize that the potential values of color are small enough that only one byte is
needed for the variable. This can make a difference when enum variables
are embedded in aggregate types, as described in Chapter 9.

Confusing typedef with #define

At first glance, it may seem that the typedef keyword duplicates func­
tionality provided by the #define directive. After all, we could write

#define USHORT unsigned int

which would serve the same effect as

typedef unsigned int USHORT i

In this case, the cwo versions are indeed similar (though there are
some subtle differences), but for more complex type declarations,
#define is inadequate. Suppo e, for example, that you want to define a
name that represents pointer to into Using #define you would write

#define PT_TOJNr int *

Then to declare twO pointers to ints, you would write

PT_TO_INr pl, p2;

which expands to

int *pl, p2;

Because the asterisk appears JUSt once, only pI is declared as a
pointer to an int; p2 is an into

H you u e a typedef, this problem does not arise. After declaring

typedef int *PT_TOJNr;

the declaration

PT_TO_INr pl, p2;

defines both p1 and p2 as pointers to ints.

4.9 The void Data Type

The void data type was not an original element of the K&R standard, but
in recent years it has become an accepted part of the C language. Prior to
the ANSI Standard, however, its semantics were somewhat vague. This
section describes the ANSI version of void.

www.manaraa.com

84 4: Scalar Data Types

The void data type has two important purposes. The first is to indicate
that a function does not return a value. For instance, you may see a func­
tion definition such as

void func(a, b)
int a, b;
{

This indicates that the function does not return any useful value. Like­
wise, on the calling side, you would declare (uncO as

extern void func () ;

This informs the compiler that any attempt to use the returned value
from (uncO is a mistake and should be flagged as an error. For example,
you could invoke (uncO as follows:

func(x, y);

But you cannot assign the returned value to a variable:

num = func(x, y); 1* This should produce an
* error
*1

The other purpose of void is to declare a generic pointer. We defer a
discussion of this subject to Chapter 7.

4.10 Typedefs

The C language allows you to create your own names for data types with
the typedef keyword. Syntactically, a typedef is exactly like a variable
declaration except that the declaration is preceded by the typedef key­
word. Semantically, the variable name becomes a synonym for the data
type rather than a variable that has memory allocated for it. For example,
the statement

typedef long int FOUR_BYTE_INT;

makes the name FOUR_BYTEjNT synonymous with long into The fol­
lowing two declarations are now identical:

long int j;
FOUR_BYTE_INT j;

By convention, typedef names are capitalized so that they are not con­
fused with variable names.

There are a number of uses for typedefs. They are especially useful for
abstracting global types that can be used throughout a program. This ap­
plication of typedefs is described in Chapter 9.

www.manaraa.com

4.11 Finding the Address of an Object 85

Another use of typedefs is to compensate for differences in C compil­
ers. For example, some non-ANSI C compilers do not support the un­
signed short type. Using typedefs, you can write the program so that it
uses unsigned short if it's available, or unsigned int when the compiler
does not support unsigned short. For ANSI-conforming compilers, you
would write

typedef unsigned short USHORTi

For compilers that do not support unsigned short, you would write

typedef unsigned int USHORTi

Then you would use the typedef name USHORT whenever you want
to declare an unsigned short variable. To compile the program on a differ­
ent machine, all you need to do is find out whether it supports unsigned
short, and write the typedef accordingly.

Note that the typedef definition must appear before it is used in a dec­
laration.

4.11 Finding the Address of an Object

Program
4-8

As we described earlier, every variable has a unique address that identifies
its storage location in memory. For some applications, it is useful to access
the variable through its address rather than through its name. To obtain
the address of a variable, you use the ampersand (&) operator. Suppose,
for instance, that j is a long int whose address is 2486. The statement

ptr = &ji

stores the address value 2486 in the variable ptr. When reading an expres­
sion, the ampersand operator is translated as "address of," so you would
read this statement as: "Assign the address of j to ptr." The following pro­
gram prints the value of the variable called j and the address of j:

#include <stdio.h>
#include <stdlih.h>

int maine void
{

int j=li

printf ("The value of j is: %d\n", j) i
printf("The address of j is; %p\n", & j)i
exi t (0) i

www.manaraa.com

86 4: Scalar Data Types

The result is:

The value of j is: 1
The address of j is: 3634264

The address represents the actual location of j in memory. The par­
ticular address listed above is arbitrary. It happens to be j's address on our
computer for a particular execution. On another computer, the value
could be different. Note that printf() requires a special format specifier
(%p) to print address values. Many compilers allow you to print an ad­
dress with the %d, %0, and %x specifiers, but this is not portable since
addresses are not guaranteed to be represented in the same fashion as inte­
gers.

Note that you cannot use the ampersand operator on the left-hand side
of an assignment expression. For instance, the following is illegal since you
cannot change the address of an object:

&x = 1000; /* ILLEGAL */

4.12 Introduction to Pointers

In the previous example,

ptr = &j;

the variable ptr that holds the address of j in our first example cannot be a
normal integer variable. To store addresses, you need a special type of
variable called a pointer variable (by storing an address, it points to an
object). To declare a pointer variable, you precede the variable name with
an asterisk. The following declaration, for example, makes ptr a variable
that can hold addresses of long int variables.

long *ptr;

The data type, long in this case, refers to the type of variable that ptr
can point to. For instance, the following is legal:

long *ptr;
long lon<1-var;
ptr = &lon<1-var; /* Assign the address of

* lon<1-var to ptr.

But this is illegal:

long *ptr;
float float_var;

*/

ptr = &float_var; j* ILLEGAL - because ptr can only
* store the address of a long
* into
*/

www.manaraa.com

4.12 Introduction to Pointers 87

Program
4-9

Program
4-10

The following program illustrates the difference between a pointer
variable and an integer variable:

#include <stdio.h>

int maine void
{

int j=l;
int *pj;

pj = &j; /* Assign the address of j to pj */
printf ("The value of j is: %d\n", j);
printf ("The address of j is : '\p\n", pj);
exi t (0);

The result is

The value of j is: 1
The address of j is: 3634264

4.12.1 Dereferencing a Pointer

The asterisk, in addition to being used in pointer declarations, is also used
to dereference a pointer (i.e., get the value stored at the pointer address). If
you have not come across the concept before, the notion of dereferencing
can be difficult to grasp at first. The following program and Figure 4-3
show how dereferencing works.

#include <stdio .h>
#include <stdlib.h>

int maine void)
{

char *p_ch;
char chl = 'A', ch2;

printf(liThe address of p_ch is %p\n", &p_ch);

p_ch = &chl;
printf("The value stored at p_ch is %p\n", p_ch);
printf(IIThe dereferenced value of p_ch is %c\n", ·p_ch);
ch2 = *p_ch;

exi t (0);

www.manaraa.com

88

Code

char *p_ch
char chI = 'A', ch2;

p_ch = &chl;

Figure 4-3: Dereferencing a pointer variable.

4: Scalar Data Types

Variable Address Contents

chl
ch2

chi
ch2

chl
ch2

1000
1004

2000
2001
2002

1000
1004

2000
2001

2002

1000
1004

2000
2001

2002

____ 4 bytes-------.

'A'

'A'

'A'

'A'

www.manaraa.com

4.12 Introduction to Pointers

The output from running this program is

The address of p_ch is 1004
The value stored at p_ch is 2001
The dereferenced value of p_ch is A

89

This is a roundabout and somewhat contrived example that assigns the
character 'A' to both chl and ch2. It does, however, illustrate the effect of
the dereference (*) operator. Figure 4-3 shows the memory contents at
each stage of the program execution. On our machine, the declarations
allocate four bytes for p_ch (pointer variables must be large enough to
hold the highest possible address in the machine so they are often the same
size as long ints), and one byte each for chl and ch2. chl is initialized to
'A'. The firstprintf() call displays the address of the pointer variable p_ch.
In the next step, p _ch is assigned the address of ch 1, which is also dis­
played. Finally, we display the dereferenced value of p_ch and assign it to
ch2.

These last steps are the important ones. The expression *p _ch is inter­
preted as: "take the address value stored in p_ch and get the value stored
at that address." This gives us a new way to look at the declaration. The
data type in the pointer declaration indicates what type of value results
when the pointer is dereferenced. For instance, the declaration

float *fp;

means that when *fp appears as an expression, the result will be a float
value.

The expression *(p can also appear on the left side of an expression:

*fp = 3.15;

In this case, we are storing a value (3.15) at the location designated by
the pointer (p. Note that this is different from

fp = 3.15;

which attempts to store the address 3.15 in (p. This, by the way, is illegal
because addresses are not the same as integers or floating-point values.

4.12.2 Initializing Pointers

You can initialize a pointer just as you would any other type of variable.
However, the initialization value must be an address. For example, you
could write

int j;
int *ptr_to~ = &j;

However, you cannot reference a variable before it is declared, so the
following declarations would be illegal:

int *ptr_to~ = &j;
int j;

www.manaraa.com

90 4: Scalar Data Types

4.12.3 Using Pointers

Pointer variables are used frequently with aggregate types, such as arrays
and structures. We have described them in this chapter because they are an
important scalar data type with which you should become familiar. In
later chapters, we describe the full flexibility and power of C pointers.

4.13 Exercises

1. When printing a float or double with the %f format specifier, how
many decimal digits does printf() output? Does printf() round or trun­
cate the value?

2. After reading the description of printf() in Appendix A, write a func­
tion that accepts a double argument and prints it out, but only prints
three decimal digits.

3. Write a program with the following declarations in it that prints out
the address of each variable.

char Ci
int ji
float Xi

What do the addresses tell you about the way your compiler allocates
memory for variables?

4. Write the octal, decimal, and hexadecimal equivalents of the following
binary numbers:

a) 00010010

b) 01100101

c) 01101011

d) 10111011 (assume two's complement notation)

e) 00111111

f) 00000100 01100100

5. Write declarations for the following:

a) An unsigned long integer.

b) A double-precision floating-point variable.

c) A pointer to a char.

d) A char initialized to 'x'.

e) An external function returning an unsigned into

www.manaraa.com

4.13 Exercises

6. Give the binary two's complement representation of the following:

a) 1

b) -1

c) 255

d) 256

e) 511

f) 512

g) 513

h) 127

i) 128

j) -128

k) OxFF

1) Ox7F

91

7. Give the binary one's complement representation of the numbers listed
in Exercise 6.

www.manaraa.com

5
Control Flow

"Begin at the beginning," the King said, very gravely, "and go on till
you come to the end: then stop. "

Lewis Carroll, Alice in Wonderland

The programs listed in the previous chapter were architecturally simple
because they were straight line programs. That is, statements were exe­
cuted in the order in which they appeared without any branching or repe­
tition. Most programming problems are not so simple. In fact, the great
power of programming languages stems from their ability to instruct the
computer to perform the same task repeatedly, or to perform a different
task if parameters change. In high-level programming languages, this is
accomplished with control flow statements that allow you to alter the se­
quential flow. Control flow statements fall into two general categories:
conditional branching and looping. Conditional branching is the ability to
decide whether or not to execute code based on the value of an expression.
Looping, also called iteration, is the ability to perform the same set of op­
erations repeatedly until a special condition is met.

5.1 Conditional Branching

Conditional branching is the most basic control feature of any program­
ming language. It enables a program to make decisions, to decide whether
or not to execute a sequence of statements based on the value of an ex­
pression. Because the value of an expression may change from one execu­
tion to another, this feature allows a program to react dynamically to

www.manaraa.com

5.1 Conditional Branching 93

different data. In C, conditional execution is performed with the if and else
keywords. The syntax is shown in Figure 5-1.

statement

statement

Figure 5-1: Syntax of an if ... else statement.

The form of an if statement is fairly simple. The if keyword is followed
by an expression enclosed in parentheses. If the expression is "true"
(nonzero), the next statement is executed. Otherwise, execution skips over
the next statement:

if (x)
statementl; /* Executed only if x is nonzero */

statement2; /* Always executed. */

If the else clause is present, the statement following the else keyword is
executed whenever the if expression is "false" (zero): '

if (x)
statementl; /* Executed only if x is nonzero */

else
statement2; /* Executed only if x is zero */

statement3; /* Always executed */

This syntax mirrors the syntax we use in everyday language. For ex­
ample, the sentence "If the light is red, stop; otherwise, go" would be writ­
ten in C as

if (light == red)
stop;

else
go;

Note that there is no then after the if as in other programming lan­
guages such as Pascal and FORTRAN.

A common use of the if statement is to test the validity of data. Sup­
pose, for example, that you want a program that accepts an integer value
from the user and prints the square root of the number. Before calling the
sqrt() function, which is part of the runtime library, you should make sure
that the input value is nonnegative:

www.manaraa.com

94

Program
5-1

Program
5-2

#include <stdio.h>
#include <stdlib . h>
#include <math .h> /* Include file for sqrt() */

int maine void
(

double num;

printf("Enter a non negative nwnber: ");
/* The \If conversion specifier indicates a
* data object of type double.
*/

scanf (''\If'', &num);
if (num < 0)

5: Control Flow

printf("Input Error: Nwnber is negative.\n");
else

printf("The square root is: \f\n", sqrt(num »;
exi t (0);

Note that the else is necessary. If we write the program without the
else, as shown in Program 5-2, the program will print an error message
when the input value is less than zero, but then go ahead and mistakenly
try to print the square root.

#include <stdio .h>
#include <stdlib.h>
#include <math.h>

int maine void
{

double num;

printf("Enter a non negative nwnber: ");
scanf (''\If'', &num);
if (num < 0)

printf("Input Error: Number is negative.\n");

/* Next statement is always executed . */
printf ("The square root is: \f\n", sqrt (num));

exit (0);

www.manaraa.com

5.1 Conditional Branching 95

Program
5-3

Bug Alert

The indentations after if and else in Program 5-2 are included for read­
ability, not for functionality. It could also be written:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main(void)
{ double nwn;

printf("Enter a non negative number:"
) ; scanf (''\If", &nwn);
if (nwn <
0) printf (ninput Error: Number is negative.\n");
else printf (liThe square root is: %f\nn,
sqrt(nwn»; exit(O);

Although this program will run correctly, it reflects poor programming
style because it is difficult to read. The normal convention is to put the
statement following an if or else on its own indented line. In this book, we
always indent two spaces at a time, although some people prefer to indent
3,4, or even 8 spaces at a time.

Misplaced Semicolons

A common programming mistake is to place a semicolon immediately
after a control flow statement-for instance, writing

if (j == 1);
j = 0;

instead of

if (j = 1)
j = 0;

Placing a semicolon after the test condition causes the compiler to
execute a null statement whenever the if expression is true. It is as if you
had written

if (j == 1)
; /* null statement */

j = 0;

As a result, i gets assigned zero regardless of whether i equals one.
Note that the null statement is syntactically legal, so the misplaced
semicolon does not cause a compiler error.

www.manaraa.com

96 5: Control Flow

5.1.1 Comparison Expressions

Typically, the conditional expression in an if statement is a comparison
between two values. Altogether, there are six comparison operators
(sometimes called relational operators), ~s shown in Table 5-1.

Table 5-1: Relational Operators.

< less than

> greater than

<= less than or-equal to

>= greater than or equal
to

-- equal to

!= not equal to

Note especially that the "equal to" comparison operator consists of
two equal signs. One of the most common mistakes made by beginners
and experts alike is to confuse the equal to (==) operator with the assign­
ment operator (=). (See the Bug Alert on this page for a discussion of when
this confusion is particularly dangerous.)

Bug Alert Confusing = with ==
One of the most common mistakes made by beginners and experts

alike is to use the assignment operator (=) instead of the equality operator
(==). For instance,

if (j = 5)
dOJanething () ;

What is intended, clearly, is that the do_something() function should
only be invoked if i equals five. It should have been written

if (j = 5)
dOJanething () ;

Note that the first version is syntactically legal because all expressions
have a value. The value of the expression i = 5 is 5. Because this is a nonz­
ero value. the if expression will always evaluate to true and
do_something() will always be invoked. Some C compilers are able to rec­
ognize this bug and issue a warning message.

www.manaraa.com

5.1 Conditional Branching 97

Relational expressions are often called Boolean expressions, in recogni­
tion of the nineteenth century mathematician and logician George Boole.
Boole reduced logic to a prepositional calculus involving only true and
false values.

Many programming languages, such as Pascal, have Boolean data types
for representing TRUE and FALSE. The C language, however, represents
these values with integers. Zero is equivalent to FALSE, and any nonzero
value is considered TRUE.

Like the arithmetic operators described in Chapter 4, the relational op­
erators are binary operators. The value of a relational expression is an
integer, either 1 (indicating the expression is true) or 0 (indicating the ex­
pression is false). The examples in Table 5-2 illustrate how relational ex­
pressions are evaluated.

Table 5-2: Relational Expressions.

Expression Value

-1 < 0 1

0>1 0

0== 0 1

1 != -1 1

1 >=- 1 1

1> 10 0

Because Boolean values are represented as integers, it is perfectly legal
to write:

if (j)
statement;

If j is any nonzero value, statement is executed; if j equals zero, state­
ment is skipped. This aspect of the language creates some interesting pos­
sibilities. Suppose, for instance, that you want to write a program that
reads a character and prints it. out if it is a letter of the alphabet, but ig­
nores it if it is not an alphabetic character. Using the runtime library func­
tion isalpha(), which returns a nonzero value if its argument is a letter, you
could write a program that checks whether the input is an alphabetic
character, as shown in Program 5-4.

Note that the statement

if (isalpha(ch))

is exactly the same as

if (isalpha(ch 0)

www.manaraa.com

98

Program
5-4

5: Control Flow

The practice of using a function call as a conditional expression is a
common idiom in C. It is especially effective for functions that return zero
if an error occurs, since you can use a construct such as

if (func ())
proceed;

else
error handler;

#include <stdio.h>
#include <ctype.h> /* included for isalpha() */
#include <stdlib.h>

int main(void
{

char ch:

printf ("Enter a character: ,,);
scanf("%c", &ch);
if (isalpha (ch »

printf("%c", ch):
else

printf("%c is not an alphabetic character.\n", ch);
exit (0):

5.1.2 Compound Statements

Any statement can be replaced by a block of statements, sometimes called
a compound statement. A compound statement must begin with a left
brace { and end with a right brace }. A function body, therefore, is really
just a compound statement. Compound statements are particularly useful
when used with flow control statements because they allow you to execute
a group of statements rather than a single statement. To conditionally exe­
cute more than one statement, therefore, surround the group of statements
with left and right braces, as shown in the following example:

www.manaraa.com

5.1 Conditional Branching 99

Program
5-5

#inc1ude <stdio.h>
#inc1ude <stdlib.h>

int maine void
(

double num;

printf("Enter a non negative number: ");
scanf (''\If'', &num);
if (num < 0)

printf("That's not a non negative number I\n");
else
(

}

printf("\£ squared is: \f\n", num, num*num);
print£ ("\£ cubed is: \f\n", num, num*num*num);

exit (0);

5.1.3 Nested if Statements

A single if statement enables the program to choose one of two paths. Fre­
quently, however, you need to specify subsequent branching. After making
decision 1, you need to make decision 2, then decision 3, etc. This type of
program flow requires a construct called a nested if statement (also called
a cascading if statement). Suppose, for example, that you want to write a
function that accepts three integers, and returns the one that has the
smallest value. Using nested if statements, you could write the function
shown in Figure 5-2.

The else phrases, except for the last one, are all necessary to provide
correct conditional execution. It is a worthwhile exercise to draw a pro­
gram flow diagram with the else phrases omitted. Note that when an else
is immediately followed by an if, they are usually placed on the same line.
This is commonly called an else if statement, although it is really an if
statement nested within an else phrase.

www.manaraa.com

100

int min(int a, int b, int Cli

{

if (a < b l
if (a<c

return ai

else
return Ci

else if (b < C

return bi
else

return Ci

Figure 5-2: Logic of nested if statement.

Yes

5: Control Flow

No

Yes No

5.2 The switch Statement

Program
5-6

When there are many paths in a program, if-else branching can become so
convoluted that it is difficult to follow. These situations are usually prime
candidates for use of the switch statement. The switch statement allows
you to specify an unlimited number of execution paths based on the value
of a single expression. For example, the function shown in Program 5-6
has five branches based on the value of inpucarg.

int switch-example (char input_arg)
{

switch (input_arq
{

case 'A' :
case 'B':
case 'e' :
case ' 0' :
default :

return
return
r e turn
return
return

1 ;
2 ;
3;
4;

1 ;

The function returns 1, 2, 3, or 4 depending on whether input_arg is
'A', 'B', 'C', or 'D', respectively. If input_arg is anything else, the function
returns -1. The same function can be written using ifs and elses:

www.manaraa.com

5.2 The switch Statement

Program int switch_example (char input_arg)
5-7 {

if (input_arg == 'A')
return 1;

else if (input_arg -- 'B')
return 2;

else if (input_arg 'e')
return 3;

else if (input_arg -- 'D')
return 4;

else
return 1;

101

Note that we line up all the else if statements at the same indentation
level to emphasize that it is a multi branching construct. Even with this
formatting, though, the version using switch is considerably more read­
able. In addition, switch statements often result in more efficient machine
code.

Bug Alert The Dangling else

Nested if statements create the problem of matching each else phrase to
the right if statement. This is often called the dangling else problem. In the
min() function in Figure 5-2, for example, note that the fir t else is associ­
ated with the second if. The generaJ rule is

An else is always associated with the nearest previoHs if.

Each if statement however, can have only one else phrase. The next
else phra e in min(), therefore, corresponds to the first if because the ec­
ond if has already been matched up. The final else phrase corresponds to

the third if statement (which is written as an else if).
It is important to format nested ifs correctly to avoid confusion. An

else phrase should always be at the same indentation level a it associated
if.

5.2.1 Syntax of a switch Statement

The formal syntax of a switch statement is shown in Figure 5-4. The ex­
pression immediately after the switch keyword must be enclosed in paren­
theses and must be an integral expression. That is, it can be char, short,
int, or long, but not float, double, or long double. (Note: the K&R stan­
dard requires the expression to be of type int.) The expressions following
the case keywords must be integral constant expressions, meaning they
may not contain variables.

www.manaraa.com

102

Bug Alert

5: Control Flow

Missing Braces

If we remove the braces after the else phrase in the example in Section 0,
the program takes on a different meaning, although it is still a syntacti­
cally legal program.

#include <stdio.h>
main ()
{

double nurn;
printf("Enter a nonnegative number: II);
scanf (''%If'', &nurn);
if (nurn < 0)

printf("That's not a nonnegative number\n");
else

printf ("%f squared is: %d\n", nurn, nurn*nurn);
printf ("%£ cubed is: %d\n". nurn, nurn*nurn*nurn);

exit(O);

The indentation is misleading here becau e it implies that both the
square and the cube of num will be printed if, and only if, num is not
less than zero. Actually, though, only the fir t statement after the else is
part of the flow-control logic. The other printf() statement is always
executed, regardless of num' value. Figure 5-3 shows the logic of the
twO versions.

This example illustrate the important point that the compiler is
oblivious to formatting. The compiler recognizes syntax, such as spell­
ing and punctuation, but it completely ignores indentations, comments,
and other formatting aid. The formatting is entirely for humans.

To avoid the problem hown here, it is a good idea to enclose all else
clause in braces, even if they are only one line long.

The semantics of the switch statement are straightforward. The switch
expression is evaluated, and if it matches one of the case labels, program
flow continues with the statement that follows the matching case label. If
none of the case labels match the switch expression, program flow contin­
ues at the default label, if it exists. (Strictly speaking, the default label need
not be the last label, though it is good style to put it last.) No two case
labels may have the same value.

www.manaraa.com

5.2 The switch Statement

if (nurn < 0)
print error

else
{

print square
print cube

if (nurn < 0)
print error

else
print square
print cube

Correct Version

Is num less
than zero?

Yes

Print error

Incorrect Version

Is num less
than zero?

Yes

Print error

Print cube
of num

Figure 5-3: Braces ensure corred control flow.

No

No

103

Print square
of num

Print cube
of num

Print square
of num

www.manaraa.com

104

constant
expression

expression

Figure 5-4: Syntax of a switch statement.

5: Control Flow

statement

statement

An important feature of the switch statement is that program flow con­
tinues from the selected case label until another control flow statement is
encountered or the end of the switch statement is reached. That is, the
compiler executes any statements following the selected case label until a
break, goto, or return statement appears. The break statement explicitly
exits the switch construct, passing control to the statement following the
switch statement. Because this is usually what you want, you should al­
most always include a break statement at the end of the statement list fol­
lowing each case label.

The prinCerror() function shown in Program 5-8, for example, prints
an error message based on an error code passed to it.

The break statements are necessary to prevent the function from
printing more than one error message. The last break after the default case
isn't really necessary, but it is a good idea to include it anyway for the sake
of consistency. If, at some later date, you change default to a specific case
and add other cases below it, you needn't worry about forgetting to in­
clude the break.

www.manaraa.com

5.2 The switch Statement 105

Program
5-8

/* Print error message based on error_code. Function is
* declared void because it has no return value.
*/

#include <stdio.h>
#define ERR-INPUT_VAL 1
#define ERR_OPERAND 2
#define ERR-OPERATOR 3
#define ERR_TYPE 4

void print_errore int error_code
{

switch (error_code)
{

case ERR_INPUT_VAL:
printf("Error: Illegal input value.\n");
break;

case ERR_OPERAND:
printf(IIError: Illegal operand.\n");
break;

case ERR-OPERATOR:
printf("Error: Unknown operator.\n");
break;

case ERR_TYPE:
printf("Error: Incompatible data.\n");
break;

default: printf("Error: Unknown error code \d\n",
error_code) ;

break;

We could write a superior version of the princerror() function by using
enumeration constants instead of #define constants. The declaration of
error _code would be:

typedef enum {
ERR_INPUT_VAL,
ERR_OPERAND,
ERR_OPERATOR,
ERR_TYPE
ERROR_SET;

ERROR_SET error_code;

The typedef declaration makes ERROR_SET a synonym for the decla­
ration of enumeration constants. If we want to add new error codes, we
need merely invent a new name and add it to the list. The enum declara­
tion ensures that each name will be given a unique value. Moreover, a
quality compiler will perform type consistency checking to ensure that you
use error _code in a meaningful way. Note also that the name
ERROR_SET is much more descriptive than into Typically, the typedef
declaration would be placed in a header file where it can be accessed by
other source files.

www.manaraa.com

106

Program
5-9

Program
5-10

5: Control Flow

Sometimes you want to associate a group of statements with more than
one case value. To obtain this behavior, you can enter consecutive case
labels. The following function, for instance, returns 1 if the argument is a
punctuation character, or zero if it is anything else.

/* Return 1 if argument is a punctuation character.
* Otherwise, return zero.
*/

int is-punc(char arg)
{

switch (arg)
(

case , , .
case , , ' .
case I: I:

case til :

case'! ': return 1;
default : return 0;

As a more practical example of the switch statement, consider the fol­
lowing function, which accepts three arguments-two operands and an
operator-and returns the value of the binary expression. Later, we'll use
this function as part of a calculator program that performs simple arith­
metic on expressions entered from the terminal.

/* This function evaluates an expression, given
* the two operands and the operator.
*/

#include <stdlib.h>
#include "err.h" /* contains the typedef

* declaration of ERR-CODE.
*/

double evaluate(double op1. double op2, char operator)
{

extern void print_error ();

switch (operator)
(
case 1+1 : return
case I .. I: return
case I * I: return
case '/' : return

op1 + op2;
op1 op2;
op1 * op2;
op1 / op2;

default : /* Illegal operator
print_error (ERR-OPERATOR) ;

exit(1) ;

*/

www.manaraa.com

5.3 Looping 107

Note that we use the print_error() function listed previously if the sec­
ond argument is not one of the four operators. The exit() function, de­
scribed in Appendix A, is a library function that exits the current program
and returns control to the operating system. You should always have a
normal exit() (argument equal to zero) in your main() function. In addi­
tion, exit() is useful in situations such as this one where it is difficult to
recover from an error. In this, case, we return a nonzero value to indicate
an abnormal exit. How the operating system reacts to different values re­
turned from exitO varies from one implementation to another.

5.3 Looping

Looping, or iteration, directs the computer to perform the same set of op­
erations over and over until a specified condition is met. The C language
contains three statements for looping:

• The while statement

• The do ... while statement

• The for statement

The following sections describe each in detail.

5.3.1 The while Statement

The syntax of a while statement is shown in Figure 5-5. The semantics are
as follows. First, the expression is evaluated. If it is a nonzero value (i.e.,
true), statement is executed. After statement is executed, program control
returns to the top of the while statement, and the process is repeated. This
continues indefinitely until the expression evaluates to zero (false), at
which time program flow jumps to the point immediately following state­
ment. The statement, which is often a compound statement, is called the
body.

expression

statement

Figure 5-5: Syntax of a while statement.

www.manaraa.com

108 5: Control Flow

Figure 5-6 shows the flow of control for a simple while statement. As
long as x is less than y, the program continues to execute the while loop.
With each pass through the loop, however, x is incremented by one. When
it is no longer less than y, control flows to the next statement.

x < Y No

';>;"~~~l~~;~) Yes

,J.}~S:,:,

Figure 5-6: Flow control of a while statement.

Because the incrementing operation occurs so frequently, the C lan­
guage has a special increment operator called ++. The while statement
shown above, for example, would normally be written:

while (x < y)
x++;

The ++ operator is described in more detail in the next chapter.
As an example of using the while statement, suppose you want to read

characters from the terminal. The scanf() statement is one way to read
data, but it requires that you know what type of data is being entered so
you can use the correct format specifier. To read data when you don't
know the data type, you can use the getcharO function, which reads a sin­
gle character from your terminal and returns it as an into Repeated calls to
getcharO enable you to read a string of characters, one at a time. When
getcharO reaches the end of the input, it returns a special value called
EOF. EOF is a constant name defined in the header file <stdio.h>. Its
value is -1 for many implementations, but you should always use the
macro name itself rather than the constant in case an implementation uses
a different value.

The following program combines getcharO and the while statement to
read a string of characters from the terminal and count the number of
spaces. The loop terminates when the getcharO function reads a newline,
represented by the \n escape sequence.

www.manaraa.com

5.3 Looping 109

Program #incl ude <s tdio . h>
5-11 #include <stdlib . h>

int maine void)
(

int ch, n~of_spaces = 0;

printf("Enter a sentence:\n");
ch = getchar();
while (ch != '\n')
{

}

if (ch == , ')
num_of_spaces++;

ch = getchar();

printf ("The number of spaces is %d. \n", num_of_spaces);
exi t (0);

Note that we make an assignment to ch before entering the while loop.
This is to ensure that its initial value, which would otherwise be random,
is not accidentally a space or newline character. Note also that the state­
ment part of the while loop is actually a compound statement. A typical
execution of the program would be:

Enter a sentence:
How many spaces does this sentence have?
The number of spaces is 6.

Note, however, that the program does not analyze your input until you
press the newline or RETURN key. This is because computers employ a
temporary storage area called a buffer for keyboard input. This allows you
to edit your input before it is processed. Once you enter a newline charac­
ter, the computer sends the entire buffer to the executing program. The
getchar() function then reads the buffer one character at a time. Chapter
12 describes buffers and I/O in more detail.

5.3.2 The do ... while Statement

One important characteristic of the while statement is that the test condi­
tion is at the top of the loop. This means that if the condition is false (or
zero) the first time, the while body will never be executed. But there are
certain situations in which you need to execute the body at least once.
These situations are not common, but when they do occur you should use
the do ... while statement, which has the form shown in Figure 5-7. The
only difference between a do ... while and a regular while loop is that the
test condition is at the bottom of the loop. This means that the program
always executes statement at least once (the first time through). Then, de­
pending on the value of expression, it may loop back to do, or it may con­
tinue with the next statement.

www.manaraa.com

110

Program
5-12

5: Control Flow

Using do ... while instead of while, the previous program would be writ­
ten:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

printf("Enter a sentence:\n");
do
{

ch = getchar () ;
if (ch == I ')

num_of_spaces++;
while (ch != '\n');

printf ("The number of spaces is '\d . \n", nWlLof_spaces);
exi t (0);

Note that in this version it is not necessary to include the initial as­
signment of ch because the clo ... while statement guarantees that at least
the first character will be fetched.

statement

expression

Figure 5-7: Syntax of a do ... while statement.

5.3.3 The for Statement

The last, but certainly not the least, of the iterative statements is the for
statement. The for statement is designed as a shorthand for a particularly
common looping situation-when you need to initialize one or more vari­
ables before entering the loop, and you need to change the value of one or
more variables each time through the loop. The syntax of a for statement
is shown in Figure 5-8.

www.manaraa.com

5.3 Looping 111

expression1

expression2 expression3

statement

Figure 5-8: Syntax of a for statement.

The for statement operates as follows:

1. First, expressionl is evaluated. This is usually an assignment ex­
pression that initializes one or more variables.

2. Then expression2 is evaluated. This is the conditional part of the
statement.

3. If expression2 is false, program control exits the for statement and
flows to the next statement in the program. If expression2 is true,
statement is executed.

4. After statement is executed, expression3 is evaluated. Then the
statement loops back to test expression2 again.

Note that expressionl is evaluated only once, whereas expression2 and
expression3 are evaluated on each iteration.

The easiest way to understand the for statement is to compare it to a
while statement, as shown below. The statement

for (exprli expr2i expr3)
statementi

is the same as

expr1i
while (expr2
£

statementi
expr3i

Although difficult to grasp at first, the for statement is probably the
most frequently used of all the iterative statements. An example should

www.manaraa.com

112

Program
5-13

Program
5-14

5: Control Flow

make its operation clearer. The following function returns the factorial of
its argument:

long int factorial (long val)
{

int j, fact = 1;

for (j=2; j <= val; j++)
fact = fact*j;

return fact;

If you're having trouble understanding how this function works, try
rewriting it using a while statement in place of the for statement. As an­
other example, consider the following function, which converts a string of
digits typed from the keyboard into an integer.

/* This function reads a string of digits from the
* terminal and produces the string's integer value.
*/

#include <stdio.h>
#include <ctype.h>

int make_int{void)
{

int num=O, digit;

digit
for {
{

getchar();
isdigit(digit)i digit

num num * 10;
num num + (digit - '0');

return num;

The expression

digit - '0'

getchar(»

converts the character from its code to its real numeric value. Note that it
only works if the codes for zero through ten are continuous and ascend­
ing. Fortunately, this is the case with all the common codes, including
ASCII and EBCDIC. In ASCII, for instance, the decimal code for '5' is 53
and the code for '0' is 48. So, if digit is '5', the expression

digit - '0'

evaluates to

53 - 48

which is 5.

www.manaraa.com

5.3 Looping

Program
5-15

Program
5-16

113

Another way to write this function, using while instead of for, is shown
in Program 5-15.

From a software engineering standpoint, the for version has the advan­
tage that the operation performed after each loop-getting the next char­
acter-is right in the looping statement itself, clearly visible. For a short
program such as this one, it probably doesn't make much difference. But
for large programs, where the loop may contain a page or more of source
code, the for statement makes it easy to find out which variable is chang­
ing with each iteration.

#include <stdio.h>
#include <ctype . h>

int rnake_int(void)
{

int nurn=O, digit;

digit = getchar();
while (isdigit(digit »
{

nurn nurn * 10;
nurn nurn + digit - '0';
digit = getchar();

return nurn;

In both versions, we call getcharO twice, which is unfortunate. If we
want to change the getcharO call to a different function call, we need to
change both occurrences. Yet another way to write this function, which is
superior to both of the previous versions, takes advantage of the fact that
an assignment expression yields a value. In this version, we call getchar()
only once.

#include <stdio.h>
#include <ctype.h>

int rnake_int(void)
{

int nurn=O, digit;

while (isdigit(digit = getchar() »
{

nurn = nurn * 10;
nurn num + (digit - '0');

return nurn;

The assignment to digit and the test of digit are combined in a single
expression. This is probably the simplest version, and the way most expe-

www.manaraa.com

114

Bug Alert

5: Control Flow

rienced C programmers would write the loop. Later in this chapter, we'll
return to this function and revise it so that we can use it in a calculator
program.

Off-by-One Errors

A common programming error is to iterate through a loop the wrong
number of times. Usually, when you're off, you're off by one because
you have used the wrong relational operator (e.g., < instead of <=).
Off-by-one errors are especially pernicious because they usually do not
produce a compile-time or runtime error. Instead, the program runs
smoothly but produces erroneous results. For example, the following
function attempts to compute the factorial of its argument:

long factorial(long arg)
{

long fact = 1, j;
for (j=l; j < arg; j++)

fact = fact * j;
return fact;

This function actually returns the factOrial of arg-l because the con­
ditional expression is

j < arg

instead of

j <= arg

The best way to avoid off-by-one errors is to think through the
problem clearly and determine exactly when the loop will terminate.
AI 0, after writing a function such a factorial(), you should test it with
known values to make sure it works. This is another reason for keeping
functions small-the smaller they are, the easier they are to test.

5.3.4 Omitting Expressions

Note from the syntax diagram (Figure 5-8) that it is legal to omit any or
all of the three expressions in a for statement. However, you must include
the two semicolons. In practice, it is common to omit expressionl or ex­
pression3, but expression2 is almost always included because it is the test
condition. Also, there is usually no reason to omit both expressionl and
expression3 as that would result in the same functionality as a while
statement. The following function, which prints a specified number of
newlines, does not use expressionl because there is no need to make as­
signments before the loop is entered. The only variable, newline_num, gets
its value from the calling function.

www.manaraa.com

5.3 Looping

Program
5-17

Program
5-18

#include <stdio . h>

void pr_newline(int newline_num)
{

for (; newline_num > 0; newline-num
printf ("\n");

Note that "--" is analogous to "++". The expression,

newline_num- -

is equivalent to:

newline_num = newline_num - 1

5.3.5 Null Statements

115

Just as it is possible to omit one of the expressions in a for loop, it is also
possible to omit the body of the for loop. This is useful when the loop's
work is being performed by the expressions. For example, the following
function reads spaces from the terminal and discards them. A space is de­
fined by the runtime library isspace() function as space characters, tabs,
and newlines.

#include <stdio.h>
#include <ctype.h> /* Header file for isspace(). */

void skip_spaces(void)
{

int c;
for (c = getchar(); isspace(c); c = getchar(»

; /* Null Statement */
ungetc(c, stdin); /* Put the nonspace character back

* in the buffer.
*/

The ungetcO function is a library function that places a character in the
input buffer. It takes two arguments. The first is the character to be re­
placed, and the second is the stream in which it is to be deposited. The
macro name stdin is defined in <stdio.h> and represents the standard input
stream, usually your terminal. The ungetc() function is particularly useful
in situations such as this one in which it is necessary to read one more
character than you want to process. In the case of skip_spaces(), for ex­
ample, it is necessary to read the first nonspace character to know where
the spaces end. The ungetc() function places this nons pace character back
in the input buffer so that it is the character read by the next getchar() call.

www.manaraa.com

116

Program
5-19

Program
5-20

5: Control Flow

There is no need for a statement in the for loop, so we use a null state­
ment, which is just a lone semicolon. It is a good idea to put the semicolon
on a separate line to make it more visible because it is potentially mis­
leading. For example, if we place the semicolon on the same line, as shown
below, a casual reader might assume that the ungetcO function is the body
of the for loop.

#include <stdio.h>
#include <ctype.h>

void skip_spaces(void)
{

int c;

for (c = getchar(); isspace(c); c
ungetc(c, stdin);

getchar(»;

This program can also be written using a while loop instead of a for
loop:

#include <stdio.h>
#include <ctype.h>

void skip_spaces (void)
{

char C;

while (isspace(c = getchar() »
; /* Null Statement */

ungetc(c, stdin);

In this version, the argument to isspaceO is the expression

c = getchar ()

So c is first assigned the value of the next input character, and then cis
passed as an argument to isspace(). If c is a space, isspace() returns a nonz­
ero value, making the loop condition true. The body of the loop, however,
is a null statement, so control returns to the top of the loop where the
process is repeated. When c is not a space, isspace() returns zero, making
the test condition false, and program control flows to the ungetc() call.

5.4 Nested Loops

Just as it is possible to nest if statements to any depth, it is also possible to
nest looping statements. The key point to remember with nested loops is

www.manaraa.com

5.4 Nested Loops 117

Program
5-21

that the inner loops must finish before the outer loops can resume iterat­
ing. Consider the following program, which prints a multiplication table
up to 10. (The \t format is a special escape sequence that causes the com­
puter to print a tab.)

/* print a multiplication table using nested loops */

#include <stdio . h>
#include <stdlib . h>

int main(void)
(

int j, le ;
printf(" 1
printf("
for (j :: 1; j
{

2

<=

3 4 5

10 ; j++)

printf (U%5dl", j);

6 7 8 9 10\n") ;
\n") i

/* outer loop */

for (le=l ; k <= 10; k++) /* inner loop */
printf ("%5%d", j *k);

printf ("\n") ;

exit (0) ;

The output would be:

1 2 3 4 5 6 7 8 9
11 1 2 3 4 5 6 7 8 9
21 2 4 6 8 10 12 14 16 18
31 3 6 9 12 15 18 21 24 27
41 4 8 12 16 20 24 28 32 36
51 5 10 15 20 25 30 35 40 45
61 6 12 18 24 30 36 42 48 54
71 7 14 21 28 35 42 49 56 63
81 8 16 24 32 40 48 56 64 72
91 9 18 27 36 45 54 63 72 81
101 10 20 30 40 50 60 70 80 90

10
10
20
30
40
50
60
70
80
90
100

For each value of j, the program first prints j, then loops through ten
values of k, printing j*k for each iteration, and then prints a newline.
Proper indentation becomes especially important with nested loops. The
indentation in our program, for example, makes it readily apparent that
the statement

printf ("%5d", j * k);

belongs to the innermost for loop. The %5d conversion specifier forces
printf{) to output 5 characters for each number. If the number requires
fewer characters, it is preceded with padding spaces. See Appendix A for
more information about printf{).

The following example is a variation on the make_intO function. This
new function, however, is capable of parsing floating-point values as well
as integers. It utilizes many of the constructs we have discussed, including

www.manaraa.com

118

Program
5-22

5: Control Flow

nested loops. Note that the for loop is nested in a while loop, which is it­
self nested within an if statement.

#include <stdio .h>
#include <ctype .h>
#define DECIMAL_POINT ' ,

double parse_num()
{

int c, j, digit_count = 0:
double value = 0, fractional_digit;

while (isdigit(c = getchar())
{

value = value * 10;
value = value + (c - '0 ');

/* If c is not digit, see if there's decimal point */
if (c == DECIMAL_POINT) /* get fraction */

while (isdigit(c = getchar())
{

digit_count++;
fractional_digit = c - '0';
for (j=O: j < digit_count; j++)
fractional_digit = fractional_digit/IO;
value = value + fractional_digit;

ungetc(c, stdin);
return value;

5.5 A Simple Calculator Program

Using the functions from this chapter and Chapter 4, we can write a sim­
ple calculator program, as shown in Program 5-23.

When executed, this program enables you to type a simple arithmetic
expression which is then calculated. For example,

Enter <number> <op> <number><newline>: 3. 1*2
6.2

The skip_spacesO function allows you to enter any number of spaces
between the operands and operator. Note, however, that the program
cannot handle complicated expressions, such as,

3* (2.3+4.5)/8.1

www.manaraa.com

5.5 A Simple Calculator Program 119

Program
5-23

Program
5-24

#include <stdio.h>
#include <stdlib.h>

int maine void)
{

extern double parse_num(), evaluate{);
extern void skip_spaces();
double opl, op2, answer;
int operator;

printf{ "Enter <number> <op> <number><newline>: II);
skip_spaces();
opl = parse-num{);
skip_spaces() ;
operator = getchar();
skip_spaces();
op2 = parse_num{);
answer = evaluate(opl, operator, op2);
printf{ "%f\n", answer);
exi t (0);

It is worth noting that scanf() has the parse_num() and skip_spaces()
functionality built into it. Therefore, you could rewrite the preceding pro­
gram more simply, as follows. (The %1£ format specifier indicates a double
variable.)

#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>

int maine void)
(

double opl, op2, answer, evaluate{);
char operator;

printf("Enter <number> <op> <number><newline>: ") i

scanf(''%If %c %If'', &opl, &operator, &op2);
answer = evaluate{ opl, operator, op2);
printf("%f\n", answer);
exit (0);

We can make the program even more efficient by passing the result of
evaluate() directly to printf(), without storing it in the variable answer:

www.manaraa.com

120

Program
5-25

#include <ctype.h>
#include <stdio . h>
#include <stdlib.h>

int main(void)
{

double opl, op2, evaluate();
char operator;

5: Control Flow

printf("Enter <number> <op> <number><newline>: ");
scanf("%If %c \If'', &opl, &operator, &op2);
printf (n%f\nn, evaluate (opL operator, op2));
exit (0);

5.6 The break and continue Statements

You have already seen the break statement in connection with the switch
statement. In that context, it prevents program flow from falling through
to the next case value. Another way of looking at it is that the break
statement prematurely terminates the switch statement, causing program
control to flow to the next statement after the switch. This is also break's
purpose when used within a looping statement.

Suppose you want to process 50 characters or an entire line, whichever
comes first. You could write:

for (cnt = 0; cnt < 50; cnt++)
{

}

c = getchar();
if (c == '\n')

break;
else

/* process character */

/* program continues here after break statement */

As soon as a newline character is encountered, the break statement is
executed, and program control flows to the statement following the for
loop. Otherwise, the loop iterates until cnt equals 50.

break statements should be used with caution because they force pro­
gram control to jump discontinuously to a new place. Too many break
statements can make a program difficult to follow. There is usually an­
other way to write the code without using break. We talk more about
some of these methods in the following chapter. There is, however, no
equally good substitute for using the break statement in a switch con­
struct.

www.manaraa.com

5.7 The goto Statement 121

Program
5-26

The continue statement provides a means for returning to the top of a
loop earlier than normal. It is particularly useful when you want to bypass
the remainder of the loop for some reason. Suppose you want to modify
the make_intO function so that it skips nondigit characters, as shown in
Program 5-26. If the input is A3b-45C, for example, the function would
return 345.

#include <stdio.h>
#include <ctype.h>

int mod~ake_int()
{

int num = 0, digit;
while {(digit = getchar(» != '\n')
{

if (isdigit(digit == 0)
continue;

num num * 10;
num = num + (digit - '0');

return num;

The if statement checks to see whether digit is in fact a digit. If it isn't,
the continue statement is executed. This returns the program to the top of
the while loop, where it reads in the next character.

As with break statements, continue statements should be used judi­
ciously because they break up the natural control flow. However, they are
much preferred over goto statements.

5.7 The go to Statement

Few programming statements have produced as much debate as the goto
statement. The gota statement is necessary in more rudimentary lan­
guages, but its use in high-level languages is generally frowned upon. Nev­
ertheless, most high-level programming languages, including C, contain a
goto statement for those rare situations in which it can't be avoided.

The purpose of the goto statement is to enable program control to
jump (or perhaps leap) to some other spot. The destination spot is identi­
fied by a statement label, which is just a name followed by a colon. The
label must be in the same function as the goto statement that references it.
Program 5-27 illustrates how the goto statement works.

www.manaraa.com

122

Program
5-27

#include <stdio.h>
#include <math . h> /* for sqrt() function def */
#include <stdlib.h>

int maine void
{

int nwn;

scanf ("lIsd", &nwn);
if (nwn < 0)

goto bacLval;
else
(

5: Control Flow

printf("The square root of nwn is IIsf", sqrt(nwn));
goto end;

bacLval:
printf("Error : Negative Value.\n");
exit (1);

end:
exit (0);

As with most usages of goto, this program can be written in a much
better fashion without using goto (see the version at the beginning of this
chapter). It is difficult, in fact, to describe any general conditions in which
a goto statement should be used. There are, however, specific instances in
which a goto statement makes the code more efficient or enhances read­
ability. For a full discussion of these cases, we recommend the 1968 paper
by E. W. Dijkstra, entitled Goto Statement Considered Harmful. In gen­
eral, goto statements should not be used unless there is a very good reason
for doing so.

5.8 Infinite Loops

An infinite loop is a loop that does not contain a terminating condition, or
a loop in which the terminating condition is never reached. In most in­
stances, infinite loops are produced by bugs in the program. For example,

for (j=O; j < 10; j++)
{

j = 1;

This loop will never finish because j is reassigned the value on each it­
eration.

www.manaraa.com

5.9 Exercises

Program
5-28

123

On the other hand, there are certain situations in which you want an
infinite loop. There are a number of ways to write infinite loops, but the
two most common are

and

while (1)
statement;

for (;;)
statement;

Both statements have equivalent functionality, so the choice is a matter
of aesthetics. To get out of an infinite loop, you need to abort the program
manually. Sometimes this is what you want. For example, we can rewrite
the calculator program with an infinite loop:

#inc1ude <ctype.h>
#inc1ude <stdio.h>

int main(void)
{

double apI, op2, answer, evaluate();
char operator;

while (1)
{

printf("Enter <number> <op> <number>"
"<newline>: ");

scanf("%If %c %If'', &opl, &operator, &op2);
answer = evaluate(apI, operator, op2);
print£("%£\n", answer);

The while(1) loop causes the program to run continuously until you
abort it. On most systems, you can abort a program by typing CTRL-C.

5.9 Exercises

1. Every computer is limited in the amount of precision it can represent
for floating-point numbers. At some point, where epsilon is very
small, the following expression will be true:

1.0 == 1.0 + epsilon

Write a program to find the largest value of epsilon on your computer.
Note that the value of epsilon may be different for floats and doubles.
Find both values (and the value for long doubles if your compiler sup-

www.manaraa.com

124

Program
5-29

5: Control Flow

ports them). Also, use 1.0, not 0.0, to test epsilon because most com­
puters have special hardware instructions for handling zero arithmetic.

2. Rewrite the following program without using break, continue, or
goto:

/* Count the number of a's in input */

#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>

int maine void)
(

int num....a = 0;
char c;
c = getchar();
while (1)
{

if (c== '\n')
break;

if (isdigit(c »
continue;

if (c == 'a')
goto adQJlum....a;

get_next_char:
c = getchar();
goto end_loop;

add_nUllLa:
num_a++;
goto get-pext_char;

en~loop:
}
exi t (0);

3. Write two programs that return the number of x's returned by
getchar(). Write the first one using only if and goto statements. Write
the second one using only while, break, and continue. Which version
is better? Why?

4. Write a function that accepts an integer number and writes that num­
ber of spaces. Using this function, write a program that reads charac­
ters from standard input, and echoes them to standard output, but
replaces tabs with five spaces.

5. Many programs that require moving character data from one place to
another use a checksum mechanism to ensure that the data are trans­
ferred correctly. The checksum technique requires a function that
sums the code values of all the characters being sent. If the letters a, b,
and c are being sent, for instance, the sum would be 294 because the
ASCII values of these characters are 97, 98, and 99. The sending part

www.manaraa.com

5.9 Exercises 125

of the program would then send this sum value along with the charac­
ters. The receiving part of the program computes the sum of the char­
acters it receives and compares it with the sum from the sending
component. If the sums match, there is a high probability that the data
were transferred correctly. Write a checksum() function that returns
the sum of a line entered from the keyboard. Use an unsigned integer
to store the sum so that the value will behave predictably if an over­
flow occurs.

6. Write two versions of a function that classifies its char argument as
one of

WHITE_SPACE (space, '\n', '\r', or '\t')
PUNCTUATION (",!;: () . ')
ALPHA (a - z, A - Z)
NUMERIC (0 - 9)
UNKNOWN (anything else)

For the first version, use only if, else, and return statements. For the
second version, use only switch and return statements. Which version
is better? Why?

7. Write a program that prints out the letters from a to z, and A to Z,
and their integer values.

8. Expand the program in Exercise 7 so that it prints out the integer val­
ues in decimal, octal, and hexadecimal formats.

www.manaraa.com

6
Operators and

Expressions
We must either institute conventional forms of expression or else

pretend that we have nothing to express.
George Santayana, Soliloquies in England

Operators are the verbs of the C language that let you calculate values. C's
rich set of operators is one of its distinguishing characteristics. In the pre­
ceding chapters, you have already seen a number of C operators, such as +
(addition), / (division), < (less than), and = (assignment). The operator
symbols are composed of one or more special characters. If an operator
consists of more than one character, you must enter the characters without
any intervening spaces:

x <= y /* legal expression */
x < = y /* illegal expression */

In this chapter, we take another look at the previously mentioned op­
erators and introduce some new ones. We also describe expressions in
greater detail.

You can think of operators as verbs and of operands as the subjects
and objects of those verbs. An expression consists of one or more oper­
ands and zero or more operators linked together to compute a value. For
instance,

a + 2

www.manaraa.com

6: Operators and Expressions 127

is a legal expression that results in the sum of a and 2. The variable a all
by itself is also an expression, as is the constant 2, because they both rep­
resent a value. There are four important types of expressions:

• Constant expressions contain only constant values. For example,
the following are all constant expressions:

5
5 + 6 * 13 / 3.0
'a'

• Integral expressions are expressions that, after all automatic and
explicit type conversions, produce a result that has one of the inte­
ger types. If j and k are integers, the following are all integral ex­
preSSlOns:

j
j * k
j / k + 3
k - 'a'
3 + (int) 5.0

• Float expressions are expressions that, after all automatic and ex­
plicit type conversions, produce a result that has one of the float­
ing-point types. If x is a float or double, the following are
floating-point expressions:

x
x + 3
x / y * 5
3.0
3.0 - 2
3 + (float) 4

• Pointer expressions are expressions that evaluate to an address
value. These include expressions containing pointer variables, the
"address of" operator (&), string literals, and array names. If p is a
pointer and j is an int, the following are pointer expressions:

p
&j
p + 1
"abc"
(char *) OxOOOfffff

The meaning of pointer arithmetic (such as p + 1) is described in
the next chapter.

www.manaraa.com

128 6: Operators and Expressions

6.1 Precedence and Associativity

All operators have two important properties called precedence and asso­
ciativity. Both properties affect how operands are attached to operators.
Operators with higher precedence have their operands bound, or grouped,
to them before operators of lower precedence, regardless of the order in
which they appear. For example, the multiplication operator has higher
precedence than the addition operator, so the two expressions

2 + 3 * 4
3 * 4 + 2

both evaluate to 14-the operand 3 is grouped with the multiplication
operator rather than the addition operator because the multiplication op­
erator has higher precedence. If there were no precedence rules, and the
compiler grouped operands to operators in left-to-right order, the first
expreSSIOn,

2 + 3 * 4

would evaluate to 20. Table 6-1 lists every C operator in order of prece­
dence.

In cases in which operators have the same precedence, associativity
(sometimes called binding) is used to determine the order in which oper­
ands are grouped with operators. Grouping occurs in either right-to-left or
left-to-right order, depending on the operator. Right-to-left associativity
means that the compiler starts on the right of the expression and works
left. Left-to-right associativity means that the compiler starts on the left of
the expression and works right. For example, the plus and minus opera­
tors have the same precedence and are both left-to-right associative:

a + b - c; /* add a to b, then subtract c */

The assignment operator, on the other hand, is right-associative:

a = b = c; /* assign c to b, then assign b to a */

6.1.1 Parentheses

The compiler groups operands and operators that appear within the pa­
rentheses first, so you can use parentheses to specify a particular grouping
order. For example,

/* subtract 3 from 2, then multiply that by 4 -­
* result is -4
*/

(2 - 3) * 4

/* multiply 3 and 4, then subtract from 2 -­
* result is -10
*1

2 - (3 * 4)

www.manaraa.com

6.1 Precedence and Associativity 129

Table 6-1: Precedence and Associativity of C Operators.

Class of operator

pnmary

unary

multiplicative

additive

shift

relational

equality

bitwise AND

bitwise exclusive
OR

bitwise inclusive
OR

logical AND

logical OR

conditional

assignment

comma

Operators in that class

() [] -> •

cast operator

sizeof

& (address of)

* (dereference)

- +

- ++

* / %

+ .

« »

< <= > >=

!=

&

I\.

&&

II

? :

+= .= *=

/= %= »= «=

&= 1\.=

Associativity

Left-to-Right

Right-to-Left

Left-to-Right

Left -to-Righ t

Left-to-Right

Left-to-Right

Left-to-Right

Left-to-Right

Left-to-Right

Left-to-Right

Left-to-Right

Left-to-Right

Right-to-Left

Right-to-Left

Left-to-Right

Precedence

HIGHEST

LOWEST

In the second case, the parentheses are unnecessary because multiplica­
tion has a higher precedence than addition. Nevertheless, parentheses serve
a valuable stylistic function by making an expression more readable, even
though they may be redundant from a semantic viewpoint. It is a good
idea to enclose all but the simplest expressions in parentheses. This ensures
that the expression is evaluated correctly, and it enables you and others to
decipher an expression without referring to the precedence table.

www.manaraa.com

130 6: Operators and Expressions

In the event of nested parentheses, the compiler groups the expression
enclosed by the innermost parentheses first. Figure 6-1 shows how a com­
piler might group and evaluate the expression 1+((3+1)/(8-4)-5).

1 + ((3 +1) / (8 - 4) - 5)

I
1 + (4 / (8 - 4) - 5)

T
1 + (4

/

S(

1 + (1 - 5)

T
1 + -4

T
-3

The innermost parentheses are evaluated
first. The expressions (3 + 1) and (8 - 4)
are at the same depth, so they can be
evaluated in either order.

Division has a higher precedence than
subtraction.

Final result.

Figure 6-1: Evaluation of an expression using parentheses.

One way to evaluate expressions is to go through the process shown in
Figure 6-1, evaluating each subexpression in order. Another method that
many compilers use is to create a tree structure, as shown in Figure 6-2.
Each operator, called a node, points to its operands, called leaves. The
compiler evaluates the expression beginning at the bottom of the inverted
tree. As each operator-operands combination is evaluated, the result is
placed in the operator node, becoming an operand for the operator at the
next higher level.

Note that there are two subexpressions at the very bottom of the tree.
The compiler is free to evaluate them in any order-one compiler may
evaluate (3 + 1) first while another evaluates (8 - 4) first. This is true of
most operators, although there are a few for which the operands must be
evaluated in left-to-right order.

www.manaraa.com

6.1 Precedence and Associativity 131

nodes

1

leaves

3 1 8

Figure 6-2: Representation of an expression as an inverted tree.

6.1.2 Order of Evaluation

An important point to understand is that precedence and assocIatIvIty
have little to do with order of evaluation, another important property of
expressions. The order of evaluation refers to the actual order in which the
compiler evaluates operators. Note that this is independent of the order in
which the compiler groups operands to operators. For most operators, the
compiler is free to evaluate subexpressions in any order it pleases. It may
even reorganize the expression, as long as the reorganization does not af­
fect the final result.

For example, given the expression

(2 + 3) * 4

the compiler might first add 2 and 3 and then multiply by 4. On the other
hand, a compiler is free to reorganize the expression into

www.manaraa.com

132

Bug Alert

(2 * 4) + (3 * 4)

as this gives the same result.

6: Operators and Expressions

The order of evaluation can have a critical impact on expressions that
contain side effects, as explained in the Bug Alert on page 141. Moreover,
reorganization of expressions can sometimes cause overflow conditions.

unexpected Expression Evaluation

Although C precedence is defined to evaluate ex pre sions as you would
expect, some expressions are calculated in a surprising way and can re­
sult in hard-to-find bugs:

y = 1 + x « 2;

You might expect that y would be assigned one plus the value of x
shifted left 2 bits. However, a glance at the precedence table reveals that
the + operator has precedence over the shift operators, 0 the actual
value y receives is equivalent to

y = (1 + xl « 2;

To protect again t unexpected evaluation, parentheses should be
used.

6.2 Unary Plus and Minus Operators

Operator

unary mmus

unary plus

Table 6-2: Unary Arithmetic Operators.

Symbol Form

-x

+ +x

Operation

negation of x

value of operand

The plus and minus operators are called unary operators (Table 6-2) be­
cause they take only one operand. The operand can be any integer or
floating-point value. The type of the result is the type of the operand after
integral promotions.

The unary plus sign is an ANSI feature not found in older compilers.
The result is the value of the operand after integral promotions. In other
words, it doesn't have any effect except to promote small integer types.

The minus operator does just what you would expect-it returns the
negation of its argument. If m equals 5, -m equals -5. On the other hand, if
m equals -5, -m equals 5. In short, the expression

www.manaraa.com

6.3 Binary Arithmetic Operators

-e

is a shorthand for the expression

o - (e)

where e is any integer or floating-point expression.

133

Do not confuse the unary minus operator with the binary subtraction
operator. Even though they use the same symbol, they are different opera­
tors. For example,

j = 3 - -x

is interpreted as

j = (3 - (- x)) ;

The first dash is a subtraction operator; the second is a unary minus
sign. Note that the space between the two dashes prevents them from be­
ing interpreted as a decrement operator.

6.3 Binary Arithmetic Operators

Table 6-3: Binary Arithmetic Operators.

Operator Symbol Form Operation

multiplication * x * y x times y

division / x / y x divided by y

remainder % x % y remainder of x divided by y

addition + x + y x plus y

subtraction x y x minus y

Most of the binary arithmetic operators (Table 6-3) should already be fa­
miliar to you. The only new one is the remainder (%) operator. The mul­
tiplication, division, and remainder operators are called multiplicative
operators and have a higher precedence than the additive operators
(addition and subtraction). The operands to the multiplicative operators
must be of integral or floating-point type. The additive operators accept
operands whose type is integral, floating-point, or pointer. All of the
arithmetic operators bind from left to right (see Table 6-1). Looking at the
third example in Table 6-4, we note that the subexpression

3/4

evaluates to zero because it is an integer expression-the fractional part of
the result is truncated.

www.manaraa.com

134 6: Operators and Expressions

Table 6-4: Examples of Expressions Using Arithmetic Operators.

Given the following declarations:

int m = 3, n = 4;
float x = 2.5, Y = 1.0;

Expression

m + n + x + y

m + x * n + y

x / y + m / n

x - y * m + y / n

x / 0

Equivalent Expression

(((m + n) + x) + y)

((m + (x * n) + y))

(x / y) + (m / n)

(x - (y * m)) + (y / n)

x / 0

Result

10.5

14.0

2.5

-0.25

undefined

Also note that if the right operand of a division expression is zero, the
results are undefined.

6.3.1 The Remainder Operator - %

Unlike the other arithmetic operators, which accept both integer and
floating-point operands, the remainder operator (sometimes called the
modulus operator) accepts only integer operands. The resulting value is
the remainder of the first operand divided by the second operand. For ex­
ample, the expression

9 % 5

has a value of 4 because 5 goes into 9 once with a remainder of 4. The
expreSSIOn

10 % 5

has a value of zero because 5 goes into 10 evenly. If either operand is
negative, the remainder can be negative or positive, depending on the im­
plementation (see the Bug Alert on page 137). The ANSI Standard requires
the following relationship to exist between the remainder and division op­
erators:

a equals a%b + (alb) * b for any integral values of a and b

As with division expressions, the result of a remainder expression is
undefined if the right operand is zero.

A frequent application of the remainder operator is to perform some
action at regular intervals. The following program, for example, reads a
line of input and prints it out, inserting a newline after every five charac­
ters.

www.manaraa.com

6.3 Binary Arithmetic Operators 135

Program
6-1

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int c, j = 0;

printf("Enter string to be squished: ");
while ((e == getehar () ! == I \n I)

{

}

if (j%5 ==== 0) /* j divisible by 5? */
printf ("\n");

putehar (e);
j ++;

exit (0);

If this program were called break line, execution would look like the
following:

$ break line
Needless redundancy is the hobgoblin ...

Needl
ess r
edund
aney
is th
e hob
gobli
n ...

Note that the program outputs a newline at the very beginning. This is
because j is initialized to zero, and dividing any number into zero always
results in zero, with zero remainder.

To make this program more general and useful, you could turn it into a
function whose argument is the interval value, as shown in Program 6-2.

Note that in this version we initialize j to one rather than zero and
place the putchar() function before the interval test. This prevents the
function from outputting an initial newline. This function would be useful
as part of a text formatter that supports adjustable line lengths. A draw­
back of this function, however, is that there is no provision against in­
serting a newline in the middle of a word. Another weakness of this
function is that j will eventually overflow, leading to unpredictable results.
We leave it as an exercise to correct these deficiencies.

www.manaraa.com

136 6: Operators and Expressions

Program #include <8 tdio. h>
6-2

void brea~line (int interval)
{

int c, j = 1;

while (c = qetchar () ! = I \n ')
{

putchar (c);
if (j%interval 0)

printf ("\n");
j++;

6.4 Arithmetic Assignment Operators

Table 6-5: Arithmetic Assignment Operators.

Operator

assIgn

add-assign

subtract-assign

multiply-assign

divide-assign

remainder-assign

Symbol

=
+=

*=

1=

%=

Form Operation

a = b put the value of b into a

a += b put the value of a+b into a

a -= b put the value of a-b into a

a *= b put the value of a * b into a

a 1= b put the value of alb into a

a %= b put the value of a%b into
a

The arithmetic assignment operators are listed in Table 6-5. The assign
operator (=) should be familiar. It causes the value of the right-hand oper­
and to be written into the memory location of the left-hand operand. In
addition, an assignment expression itself has a value, which is the same
value that is assigned to the left-hand operand. The left-hand operand,
sometimes called an lvalue, must refer to a memory location.

www.manaraa.com

6.4 Arithmetic Assignment Operators 137

Bug Alert Integer Division and Remainder

When both operands of the division operator (I) are integers, the result
is an integer. If both operands are positive and the division is inexact,
the fractional part is truncated:

5/2 evaluates to 2
7/2 evaluates to 3
1/3 evaluates to 0

If either operand is negative, however, the compiler is free to round
the result either up or down:

-5/2 evaluates to -2 or -3
-7/-2 evaluates to -3 or -4
-1/-3 evaluates to 0 or -I

By the same token, the sign of the re ult of a remainder operation is
undefined by the C Standard:

-5 \ 2 evaluates to 1 or - 1
7 \ -4 evaluates to 3 or -3

Obviously, you should avoid division and remainder operations
with negative numbers because the results can vary from one compiler
to another.

If the sign of the remainder is important to your program's opera­
tions, you should use the runtime library dill() function, which com­
putes the quotient and the remainder of its two arguments. The sign of
both results is determined in a guaranteed and portable manner. (See
the description of dill() in Appendix A for more information.)

As mentioned previously, the assign operator has right-to-Ieft associa­
tivity, so the expression

a = b = c = d = 1;

is interpreted as

(a = (b = (c = (d = 1))));

First 1 is assigned to d, then d is assigned to c, then c is assigned to h,
and finally h is assigned to a. The value of the entire expression is 1. Mul­
tiple assignments are convenient for assigning the same value to more than
one variable. Note, however, that each assignment may cause quiet con­
versions, so

int j;
double f;
f=j=3.5;

assigns the truncated value 3 to both f and j.

www.manaraa.com

138

On the other hand,

j=f=3.5;

assigns 3.5 to f and 3 to j.

6: Operators and Expressions

To avoid surprises that can result from such quiet conversions, use
multiple assignments only when all the variables have the same data type.

In addition to the simple assign operator, the C language supports five
additional assignment operators that combine assignment with each of the
arithmetic operations. The equivalencies are shown in Table 6-6.

For example, the expression

j = j * 5;

can be written

j *= 5;

One of the main reasons for using the arithmetic assignment operators
is to avoid spelling mistakes and make code more readable. For example,
the expression

op_big_x_dimension_3 = op_big_x_dimension_3 * 2;

can be written

The second version is easier to read and to write and contains fewer
opportunities for spelling errors. This issue becomes even more important
when referencing structure and union members, as described in Chapter 9.

In addition, the use of the arithmetic assignment operators sometimes
produces more efficient object code. The increased efficiency is due to the
fact that some computers have special machine instructions to perform
arithmetic-assign combinations. A good compiler will usually rewrite an
expression to take advantage of this feature.

Another feature of the arithmetic assignment operators is that if the
1 value contains side effects, the side effects occur only once. This feature
has special significance for arrays, as explained in the next chapter. See the
Bug Alert on page 141 for more information about side effects.

As shown in Table 6-1, the assignment operators have relatively low
precedence. This leads to interesting consequences. For example, the fol­
lowing two expressions are not the same:

j = j * 3 + 4;
j *= 3 + 4;

The addition operator has higher precedence than the assign operator,
and the multiplication operator has higher precedence than the addition
operator, so the two expressions are interpreted as follows:

www.manaraa.com

6.5 Increment and Decrement Operators 139

j=j*3+4 j *= 3 + 4

1
+

j *= (3 + 4)

+ j = ((j * 3) + 4) j = (j * (3 + 4))

Table 6-6 gives some more examples of expressions using these opera­
tors.

Table 6-6: Examples of Expressions Using
Arithmetic Assignment Operators.

Given the following declarations:

int m = 3, n = 4;
float x = 2.5, Y = 1.0;

Expression Equivalent Expression

m + = n + x y m = (m + ((n + x) - y))

m /= x* n + y m = (m / ((x* n) + y))

n %= y + m n = (n % (y + m))

x += y -= m x = (x + (y (y - m)))

6.5 Increment and Decrement Operators

Table 6-7: The Increment and Decrement Operators.

Operator Symbol Form Operation

Result

8

o

o

0.5

postfix
increment

++ a++ get value of a, then increment a

postfix
decrement

prefix
increment

prefix
decrement

++

a - - get value of a, then decrement a

++a increment a, then get value of a

- -a decrement a, then get value of a

In the previous chapter, we introduced the increment and decrement sym­
bols as shorthands for adding 1 to and subtracting 1 from a variable. As
Table 6-7 indicates, there are actually two versions of each operator. If the
operator comes after the variable, it is called a postfix operator. If it comes

www.manaraa.com

140

Program
6-3

Program
6-4

6: Operators and Expressions

before the 1 value expression, it is called a prefix operator. The difference
between the two types of operators is subtle but can be very important, as
we explain in this section.

Like the unary minus operator, the increment and decrement operators
are unary. The operand must be a scalar 1 value-it is illegal to increment
or decrement a constant or a structure. It is legal to increment or decre­
ment pointer variables, but the meaning of adding one to a pointer is dif­
ferent from that of adding one to an arithmetic value. We describe pointer
arithmetic in the next chapter.

The postfix increment and decrement operators fetch the current value
of the variable and store a copy of it in a temporary location. The com­
piler then increments or decrements the variable. The temporary copy,
which has the variable's value before it was modified, is used in the ex­
pression. For example:

#include <stdio.h>
#include <stdlib . h>

int main(void)
{

int j = 5, k = 5;
printf("j: %d\t k: %d\n". j++. k);
printf("j: %d\t k: %d\n", j, k);
exit(0);

The result is:

j: 5 k: 5
j: 6 k: 4

In the first printf{) call, the initial values of j and k are used, but once
they have been used they are incremented and decremented, respectively.

In contrast, the prefix increment and decrement operators modify their
operands before they fetch the values:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

int j = 5, k = 5;
printf("j: %d\t k: %d\n" , ++j, k);
printf("j: %d\t k: %d\n" , j, k);
exit(0);

www.manaraa.com

6.5 Increment and Decrement Operators 141

Bug Alert Side Effects

The increment and decrement operators and the assignment operators
cause side effects. That is, they not only result in a value but also change
the value of a variable. A problem with side effect operators is that it is
not always po sible to predict the order in which the side effects occur.
Consider the following statement:

x = j * j++;

The C language does not specify which multiplication operand is to
be evaluated first. One compiler may evaluate the left-hand operand
first, and another may evaluate the right-hand operand first. The results
are different in the twO cases. If i equals 5 and the left-hand operand is
evaluated first, the expression will be interpreted as

x = 5 * 5; /* x is assigned 25 */

If the right-hand operand is evaluated first, the expression becomes

x = 6 * 5; /* x is assigned 30 */

Statements such as this one are non portable and should be avoided.
The side effect problem also crops up in function calls because the C
language does not guarantee the order in which arguments are evalu­
ated. For example, the function call

f (a. a++)

is not portable because compilers are free to evaluate the arguments in
any order they choose.

To prevent side effect bugs, follow this rule: If you use a side effect
operator in an expression, do not use the affected variable anywhere
else in the expression. The ambiguous expression above, for instance,
can be made unambiguous by breaking it into two assignments:

x = j * j;
++j;

The result of this version is

j: 6 k: 4
j: 6 k: 4

In many cases, you are interested only in the side effect, not in the re­
sult of the expression. In these instances, it doesn't matter which operator
you use. For example, as a stand-alone assignment, or as the third expres­
sion in a for loop, the side effect is the same whether you use the prefix or
postfix versions:

x++;

www.manaraa.com

142

Program
6-5

6: Operators and Expressions

is equivalent to

++x;

and the statement .

for (j = 0; j <= 10; j++)

is equivalent to

for (j = 0; j <= 10; ++j)

You need to be careful, however, when you use the increment and dec­
rement operators within an expression. Consider the rendition of the
break_line() function:

#include <stdio.h>

void break_line (int interval)
{

int c, j=O;

while «c = qetchar() != '\n')
{

if «j++ % interval) -- 0)
printf ("\n");

putchar (c);

This works because we use the postfix increment operator. If we were
to use the prefix increment operator, the function would break the first
line one character early.

6.5.1 Precedence of Increment and Decrement
Operators

Note in Table 6-1 that the increment and decrement operators have the
same precedence but bind from right to left. So the expression

- -j++

is evaluated as

- - (j++)

This expression is illegal because j++ is not an 1 value as required by the
-- operator. In general, you should avoid using multiple increment or dec­
rement operators together. Table 6-8 shows a number of expressions in­
volving increment and decrement operators.

www.manaraa.com

6.6 Comma Operator

Table 6-8: Examples of Expressions Using the Increment and
Decrement Operators.

Given the following declarations:

int j = 0,

Expression

m++ - - - j

m += ++j * 2

m++ * m++

6.6 Comma Operator

m = 1, n = -li

Equivalent Expression

(m++) - (- - j)

m = (m + ((++j) *

(m++) * (m++)

2)

Result

2

3

implementation­
dependent

Table 6-9: The Comma Operator.

Operator Symbol Form Operation

comma a , b evaluate a, evaluate b,
result is b

143

The comma operator (Table 6-9) allows you to evaluate two or more dis­
tinct expressions wherever a single expression is allowed. The result is the
value of the rightmost operand. The comma operator is one of the few
operators for which the order of evaluation is specified. The compiler must
evaluate the left-hand operand first.

Although the comma operator is legal in a number of situations, it
leads to confusing code in many of them. By convention, therefore, the
comma operator is used primarily in the first and last expressions of a for
statement. For instance,

for (j = 0, k = 100i k - j > Oi j++, k--)i

In this example, both j and k are initialized before the loop is entered.
After each iteration, j is incremented and k is decremented. It is equivalent
to the following while loop.

J = Oi
k = 100i
while (k j < 0)
{

j++i
k - - i

www.manaraa.com

144

Program
6-6

Bug Alert

Note that this code could also be written

j = 0, k=100:
while (k - j < 0)
{

j++, k--:

6: Operators and Expressions

Some programmers use the comma operator in this context, but we feel
it is better style to place each assignment on its own line to avoid confu­
sion.

There is also a temptation to fit as much as possible into the for ex­
pressions. For example, the break_lineO function could be written:

#include <stdio_h>

void break_line (int interval)
(

int c, j:

for (c=getchar(), j = a: c != EOF: j++, c getchar(»
{

putchar(c):
if (j%interval == 0)

pu tchar (I \n ');

Although this is more compact, it is not better because it is harder to
read. In particular, you should be wary about entering multiple assign­
ments in the third expression of a for loop.

Comparing Floating-Point Values

It is foolhardy to compare floating-point values for equality because
floating-point representations are inexact for some numbers. For exam­
ple, the following expression, although algebraically true, will evaluate
to false on most computers:

(1.0/3.0 + 1.0/3.0 + 1.0/3 . 0) == 1 . 0

This evaluates to 0 (false) because the fraction 1.0/3.0 contains an
infinite number of decimal places (3.33333 ...). The computer is capable
of holding only a limited number of decimal places, so it rounds each
occurrence of 113. As a result, the left-hand side of the expression does
not equal 1.0 exactly.

To avoid bugs caused by inexact floating-point representations, re­
frain from using strict equality comparisons with floating-point types.

www.manaraa.com

6.7 Relational Operators 145

6.7 Relational Operators

Relational operators (Table 6-10) should be familiar from the previous
chapter. In this chapter, we discuss some of the ramifications of the prece­
dence and associativity rules when applied to these operators. Note first
that all of these operators have lower precedence than the arithmetic op­
erators. The expression

a + b * e < d / f

is evaluated as if it had been written

(a + (b * e)) < (d / f)

Among the relational operators, the first four in Table 6-10 have the
same precedence. The == and != operators have lower precedence. All of
the relational operators have left-to-right associativity.

Table 6-11 illustrates how the compiler parses complex relational ex­
pressIOns.

Table 6-10: The Relational Operators.

Operator

greater than

less than

greater than or
equal to

less than or equal
to

equal to

not equal to

Symbol

>

<

>=

<=

!=

Form

a > b

a < b

a >= b

a <= b

Result

1 if a is greater than b; else
o
1 if a is less than b; else 0

1 if a is greater than or
equal to b; else 0

1 if a is less than or equal to
b; else 0

a == b 1 if a is equal to b; else 0

a ! = b 1 if a is not equal to b; else
o

www.manaraa.com

146 6: Operators and Expressions

Table 6-11: Examples of Expressions Using the Relational Operators.

Given the following declarations:

int j = 0, m = 1, n = -1;
float x = 2.5, y = 0.0;

Expression Equivalent Expressions

j > m

m / n < x

j <= m >= n

j <= X == m

x + j y > n > m

x += (y >= n)

++j == m != y * 2

j > m

(m / n) < x

((j <= m) >=n)

((j <= x) -- m)

((-x) +j) == (y>n) >=

x = (x + (y >= n))

((++j) -- m) != (y

m)

* 2)

Result

o
1

1

1

o
3.5

1

6.8 Logical Operators

In algebra, the expression

x < y < z

is true if y is greater than x and less than z. Unfortunately, this expression
has a very different meaning in C, since it is evaluated as

(x < y) < z

The subexpression (x < y) is evaluated first and results in either 0 and
1. So in C, the expression is true if x is less than y and z is greater than 1,
or if x is not less than y and z is greater than O. To obtain the algebraic
meaning, you must rewrite the expression using relational operators.

The logical AND operator (&&) and the logical OR operator (II)
(Table 6-12) evaluate the truth or falseness of pairs of expressions. The
AND operator returns TRUE only if both expressions are TRUE. The OR

Operator

logical AND

logical OR

logical negation

Table 6-12: The Logical Operators.

Symbol Form Result

&& a && b 1 if a and b are nonzero;
else 0

II a II b 1 if a or b is nonzero; else 0

! a 1 if a is zero; else 0

www.manaraa.com

6.8 Logical Operators 147

operator returns TRUE if either expression is TRUE. To test whether y is
greater than x and less than z, you would write

Ix < y) && Iy < z)

The logical negation operator (!) takes only one operand. If the oper­
and is TRUE, the result is FALSE; if the operand is FALSE, the result is
TRUE.

Recall that in C, TRUE is equivalent to any nonzero value and FALSE
is equivalent to zero. Tables 6-13 through 6-15 show the logical tables for
each operator, along with the numerical equivalent. Note that all of the
operators return 1 for TRUE and 0 for FALSE.

The operands to the logical operators may be integers or floating-point
objects. The expression

1 && -5

results in 1 because both operands are nonzero. The same is true of the
expresslOn:

0.5 && -5

Logical operators (and the comma and conditional operators) are the
only operators for which the order of evaluation of the operands is de­
fined. The compiler must evaluate operands from left to fight. Moreover,
the compiler is guaranteed not to evaluate an operand if it is unnecessary.
This is useful to guard against runtime problems such as division by zero
or dereferencing a null pointer dereference. For example, in the expression

if Ila != 0) && Ib/a == 6.0))

if a equals zero, the expression (b/a == 6) will not be evaluated. This rule
can have unexpected consequences when one of the expressions contains
side effects (see the Bug Alert on page 141).

Table 6-13: Truth table for && operator.

p q p&&q

0 0 0

nonzero 0 0

0 nonzero 0

nonzero nonzero 1

www.manaraa.com

148 6: Operators and Expressions

Table 6-14: Truth table for II operator.

p q pllq

0 0 0

nonzero 0 1

0 nonzero 1

nonzero nonzero 1

Table 6-15: Truth table for! operator.

p !p

o 1

nonzero o

Table 6-15 shows a number of examples that use relational and logical
operators. Note that the logical NOT operator has a higher precedence
than the others. The AND operator has higher precedence than the OR
operator. Both the logical AND and OR operators have lower precedence
than the relational and arithmetic operators.

A complex relational expression is normally used as the conditional
part of a looping statement, or in an if statement. Linking expressions
with the logical AND operator is equivalent to using nested if statements.
The expression

if ((a < b) && (b < e))
stmt;

is functionally equivalent to

if (a < b)
if (b < c)

stmt;

This is true as long as there is no else present. However, the sequence

if ((a < b) && (b < e))
stmt1;

else
stmt2;

is not the same as

if (a < b)
if (b < e)

stmtl;
else

stmt2;

www.manaraa.com

6.8 Logical Operators

To get the same functionality, you would have to write

if (a < b)
if (b < c)

stmtl;
else

stmt2;
else

stmt2;

149

In situations that don't involve an else, you can use either form. Given
that you can write the expression either way, which should you use? The
relational expression is more maintainable because it is easy to add else
clauses at a later date. In terms of readability, the two versions are about
the same. The relational expression version is easier to read because it
groups all the necessary conditions together. It also avoids some of the
readability problems associated with deeply nested if statements. On the
other hand, relational expressions can themselves be difficult to read if
they become too long.

One way to decide whether a relational expression is too complex is to
employ the so-called "telephone test." This involves reading aloud the re­
lational expression. For instance, the previous example would be read as
"if a is less than band b is less than c." If you can understand the expres­
sion as you read it, then it passes the test and you can use it. If, on the
other hand, you find yourself losing the thread, it is probably better to
break it up into nested expressions. Most important, you should be consis­
tent. If you like one style better than another, use it throughout your pro­
grams. Don't switch back and forth.

Table 6-16: Examples of Expressions Using the Logical Operators.

Given the following declarations:

int j = 0, m = 1, n = -1;
float x = 2.5, Y = 0.0;

Expression Equivalent Expression

j && m (j) && (m)

j < m && n < m (j < m) && (n < m)

m + n II j (m + n) II (! j)

x * 5 && 5 II min ((x*5) && 5) II (min)

j <= 10 && x >= 1 && m ((j<=10) && (x>=l)) &&

!x II !n II m + n ((!x) II (!n)) II (m+n)

x * y < j + m II n ((x * y) < (j + m)) II
(x > y) + ! j II n++ ((x>y) + (! j)) II (n++)

(j II m) + (x II ++n) (j I I m) + (x II (++n))

Result

0

1

1

1

m 1

0

n 1

1

2

www.manaraa.com

150 6: Operators and Expressions

Bug Alert Side Effects in Relational Expressions

Logical operators (and the conditional and comma operators) are the
only operators for which the order of evaluation of the operands is de­
fined. For these operatOrs a compiler must evaluate operand from left
to right. However, a compiler evaluates only as much of a relational
expression as it needs to determine the result. In many cases, this means
that the compiler does not need to evaluate the entire expression. For
instance, consider the following expression:

if «a < b) && (c == d»

The compiler begins by evaluating (a < b). If a is not less than b, the
compiler knows that the entire expression is false, so it wilJ not evaluate
(c == d). This is called a short-circuit evaluation and can cause problem
if orne of the expressions contain side effect :

if «a < b) && (c == d++»

In this case, d is incremented only when a is less than b. This mayor
may not be what the programmer intended. In general, avoid using ide­
effect operators in relational expressions.

6.9 Bit-Manipulation Operators

The bit-manipulation operations (Table 6-17) enable you to access specific
bits within an object and to compare the bit sequences of pairs of objects.
The operands for all the bit-manipulation operators must be integers.

Table 6-17: The Bit-Manipulation Operators.

Operator Symbol Form Result

right shift » x » y x shifted right y bits

left shift « x « y x shifted left y bits

bitwise AND & x & y x bitwise ANDed with y

bitwise inclusive OR x I y x bitwise ORed with y

bitwise exclusive OR II x 1\ y x bitwise exclusive
(XOR) ORed with y

bitwise complement -x bitwise complement of x

www.manaraa.com

6.9 Bit-Manipulation Operators 151

6.9.1 Shift Operators

The two shift operators, « and », enable you to shift the bits of an ob­
ject a specified number of places to the left or the right. The operands
must be of integral type, and the automatic integral promotions are per­
formed for each operand. After these promotions, the right-hand operand
is converted to an into The type of the result is the type of the promoted
left-hand operand.

Consider the examples in Table 6-17 (these examples assume that an
int is 16 bits and that two's complement notation is used for negative
numbers).

Shifting to the left is equivalent to multiplying by powers of two:

x « y is equivalent to x * 2Y

Shifting nonnegative integers to the right is equivalent to dividing by
powers of two:

x » y is equivalent to x / 2Y

Table 6-18: Examples Using the Shift Operators.

Expression Binary Model of Left Binary Model of Result Result
Operand Value

5 « 1 00000000 00000101 00000000 00001010 10

255 » 3 00000000 11111111 00000000 00011111 31

8 « 10 00000000 00001000 00100000 00000000 213

1 « 15 00000000 00000001 10000000 00000000 _2 15

Note that as bits are moved to the right or left, the vacant bits are filled
with zeroes. This is the rule when a positive value is shifted. When a nega­
tive value is shifted to the right, however, the vacant bits can be filled with
ones or zeroes, depending on the implementation, as shown in Table 6-18.

Table 6-19: Shifting Negative Numbers. Some implementations fill the va­
cant bits with zeroes, whereas others fill them with ones.

Expression

-5 » 2

-5 » 2

Binary Model of Left
Operand

11111111 11111011

11111111 11111011

Binary Model of Result

00111111 11111110

11111111 11111110

Result
Value

213 -1

-2

www.manaraa.com

152 6: Operators and Expressions

The first version, in which vacant bits are filled with zeroes, is called a
logical shift. The second version is called an arithmetic shift because it re­
tains the arithmetic value. The ANSI Standard does not specify whether a
compiler should perform a logical or arithmetic shift for signed objects. If
the left operand is unsigned, however, the compiler must perform a logical
shift. For example,

(unsigned) -5 » 2

always results in 216_1 on a machine where ints are 16 bits long. Use the
(unsigned) cast for portability. Also, make sure that the right operand is
not larger than the size of the object. For example, the following produces
unpredictable and nonportable results because most ints have fewer than
50 bits:

10 » 50

You will also get unpredictable results if the shift count (the second op­
erand) is a negative value.

6.9.2 Logical Bitwise Operators

The logical bitwise operators are similar to the Boolean operators, except
that they operate on every bit in the operand(s). For instance, the bitwise
AND operator (&) compares each bit of the left operand to the corre­
sponding bit in the right operand. If both bits are one, a one is placed at
that bit position in the result. Otherwise, a zero is placed at that bit posi­
tion.

When constants are used in expressions with bitwise operators, they
are usually written in hexadecimal notation to make it easier to see the
value of each bit. Each digit in a hexadecimal number represents four bits.
By memorizing the sixteen possible combinations (see Table 6-19), you
can quickly convert from binary to hexadecimal and vice versa.

shows some examples of the bitwise AND operator.
The bitwise inclusive OR operator (I) places a one in the resulting

value's bit position if either operand has a bit set at the position (see Table
6-21).

The bitwise EXCLUSIVE OR (XOR) operator (A) sets a bit in the re­
sulting value's bit position if either operand (but not both) has a bit set at
the position (see Table 6-22).

The bitwise complement operator (-) reverses each bit in the operand
(see Table 6-23).

www.manaraa.com

6.9 Bit-Manipulation Operators

Table 6-20: Decimal, Hexadecimal, Binary, and Octal Versions of the
Integers 0 Through 15.

Decimal Hex Binary Octal

0 0 0000 0

1 1 0001 1

2 2 0010 2

3 3 0011 3

4 4 0100 4

5 5 0101 5

6 6 0110 6

7 7 0111 7

8 8 1000 10

9 9 1001 11

10 A 1010 12

11 B 1011 13

12 C 1100 14

13 D 1101 15

14 E 1110 16

15 F 1111 17

Table 6-21: The Bitwise AND Operator.

Expression Hexadecimal Value Binary Representation

9430 Ox24D6 00100100 11010110

5722 Ox165A 00010110 01011010

9430 & 5722 Ox0452 00000100 01010010

Table 6-22: Examples Using the Bitwise Inclusive OR Operator.

Expression Hexadecimal Value Binary Representation

9430 Ox24D6 00100100 11010110

5722 Ox165A 00010110 01011010

9430 I 5722 Ox36DE 00110110 11011110

153

www.manaraa.com

154

Program
6-7

6: Operators and Expressions

Table 6-23: Example Using the XOR Operator.

Expression

9430

5722

9430 1\ 5722

Hexadecimal Value

Ox24D6

Ox165A

Ox328C

Binary Representation

00100100 11010110

00010110 01011010

00110010 10001100

Table 6-24: Example Using the Bitwise Complement Operator.

Expression

9430

-9430

Hexadecimal Value

Ox24d6

Oxdb29

Binary Representation

00100100 11010110

11011011 00101001

The bit-manipulation operators are frequently used to implement a
programming technique called masking, which allows you to access a spe­
cific bit or a group of bits. This is particularly useful for compressing in­
formation. Suppose, for instance, that you have a test consisting of 32
yeslno questions. Because each question has only two possible answers,
you can store the answer to each in a single bit. The answers for the entire
test can be stored in a 32-bit int, as shown in the following code.

/* Return bitmap of correct answers.
* limited to 32 total answers
*/

#inc1ude <stdio . h>

long get_answers()
{

long answers = 0;
int j;
char c;

for (j=O; j <= 31; j++)
(

scanf ("!lic", &c);
if (c == 'y' II c == 'Y')

answers 1= lL « j;

printf("Answers entered = (!lilx)", answers);
return answers;

www.manaraa.com

6.9 Bit-Manipulation Operators 155

Program
6-8

Note particularly how the correct bit is set for each yes answer. With
each iteration through the for loop, j is incremented, so the expression

1 « j

moves the set bit one position to the left:

VaJueofj

o
1
2
3
4
5

VaJueoft «j

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000001
00000010
00000100
00001000
00010000
00100000

By ORing this expression with answer, we can set all the bits that have
an answer of 'y' or 'Y'. For example if the test answers are,

ynnnynyynnynynyyynynnnynynynnnyy

The bit pattern of answer will be (with high-order bits on the left):

1 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0 0 0 1

This is one general use of the bitwise OR-to set one or more bits in an
object. Having arranged the bits in answer, we need a way to compare
answer to the correct answers. This is accomplished with the exclusive OR
operator:

/* correct answers are:
* nnyy ynyn nyyy yynn nnyn yyyy ynyy nyny
* 0011 1010 0111 1100 0010 1111 1011 0101
*/

#define CORRECT_ANSWERS Ox3A7C2FB5

double grade_test(long int answers
{

extern int count-pits();
long wrong_bits;
double grade;

wrong-pits = answers A CORRECT~SWERS;
grade = 100 * «32 - count_bits (wrong-pits » / 32.0);
return grade;

The XOR operator compares answers to CORRECT_ANSWERS and
sets a bit in wrong_bits only when the operands differ. Hence, wrong_bits
has bits set for each wrong answer. To obtain the grade, we subtract the
number of wrong answers from the total to get the number of right an­
swers. Then we divide the number of right answers into the total. Finally,

www.manaraa.com

156 6: Operators and Expressions

Program
6-9

Program
6-10

we multiply by 100. If there were ten wrong answers, for example, the
expression would be

100 * ((32.0 - 10) /32.0)

which reduces to

1.00 * (22.0 / 32.0)

for a grade of 69.
We still need to write a councbits() function that counts the number of

bits set in wrong_answers. This function is similar to get_answers(), but
instead of using the OR operator to set bits, we use the AND operator to
read bits.

int count-pits(long bitCnt)
{

int j. count = 0;

for (j = 0; j <= 31; j++)
if (bitCnt & (lL « j»

++count;
return count;

Now we can invoke all of these functions from a main() function to

form an executable program:

#include <stdio.h>
#include <stdlib . h>

int maine void)
(

extern double grade_teste);
extern long int get_answers();
double grade;

printf ("Enter the answers: \n");
grade = grade_teste get_answers());
printf("The grade is \3.0f\n". grade);
exit(0);

Note that the argument to grade_test() is itself a function. It is func­
tionally the same as

temp = get_answers();
grade = grade_teste temp);

but in the nested version, we do not need to declare a temporary variable
temp. This makes the function somewhat cleaner and more efficient.

www.manaraa.com

6.10 Bitwise Assignment Operators 157

The format specifier %3.0£ directs printf() to output at least three dig­
its of the value, but to round the decimal digits.

If this program is called grade, typical execution, with three incorrect
answers, would look like the following:

$ grade
Enter the answers:
ynynyynyyyyynynynnyyyyynnynnyyny
The grade is 91

A major drawback of this program is that it works only when there are
exactly 32 questions and answers. We leave it as an exercise to modify the
program so that it works for any number of questions, where the number
of questions and answers is entered by the user. (For more than 32 ques­
tions, you need to use an array, described in the next chapter.)

6.10 Bitwise Assignment Operators

Table 6-25: The Bitwise Assignment Operators.

Operator Symbol Form Operation

right-shift-assign »= a »= b Assign a»b to a.

left -shift -assign «= a «= b Assign a«b to a.

AND-assign &= a &= b Assign a&b to a.

OR-assign 1= a 1= b Assign alb to a.

XOR-assign A= a ,,= b Assign a"b to a.

The bitwise assignment operators (Table 6-25) are analogous to the
arithmetic assignment operators. For example, the assignment

x = x « 2;

can be written

x «= 2;

www.manaraa.com

158 6: Operators and Expressions

6.11 Cast Operator

Table 6-26: The Cast Operator.

Operator Symbol Form Operation

cast (type) (type) e Convert e to type.

We introduced the cast operator (Table 6-26) in Chapter 4. It enables you
to convert a value to a different type. Qne of the uses of casts, as we re­
marked in Chapter 4, is to promote an integer to a floating-point number
to ensure that the result of a division operation is not truncated, as illus­
trated in the following example:

/* Result is 1 because fractional part is truncated
*/

3/2

/* Result is 1.5 because the 3 is converted to a
* float
*/

(float) 3 / 2

Note that the cast operator has very high precedence, so the preceding
expression is parsed as if it had been written

«float) 3) / 2

The most frequent and important uses of casts involve pointers and
data initialization. We cover both of these topics in later chapters.

6.12 sizeof Operator

Operator Symbol

sizeof sizeof

Table 6-27: The sizeof Operator.

Form

sizeof (t) or
sizeof x

Operation

Return the size, in bytes,
of data type t or expres­
sion x.

The sizeof operator (Table 6-27) accepts two types of operands: an ex­
pression or a data type. However, the expression may not have type func­
tion or void or be a bit field (described in Chapter 9). Moreover, the
expression itself is not evaluated-the compiler determines only what type
the result would be. Any side effects in the expression, therefore, will not
have an effect. The result type of the sizeof operator is either int, long,

www.manaraa.com

6.12 sizeof Operator 159

Program
6-11

unsigned int, or unsigned long, depending on your compiler. The ANSI
Standard requires it to be unsigned.

If the operand is an expression, sizeof returns the number of bytes that
the result occupies in memory:

/* Returns the size of an int (4 if ints are four
* bytes long)
*/

sizeof (3 + 5)

/* Returns the size of a double (8 if doubles are
* eight bytes long)
*/

sizeof (3.0 + 5)

For expressions, the parentheses are optional, so the following is legal:

sizeof x

By convention, however, the parentheses are usually included.
The operand can also be a data type, in which case the result is the

length in bytes of objects of that type:

sizeof (char)
sizeof (short)
sizeof (float)
sizeof (int *)

/* 1 on all machines */
/* 2 on our machine */
/* 4 on our machine */
/* size of a pointer to an integer
* (4 bytes on our machines) */

The parentheses are required if the operand is a data type. Note that
the results of most sizeof expressions are implementation dependent. The
only result that is guaranteed is the size of a char, which is always l.

In general, the sizeof operator is used to find the size of aggregate data
objects such as arrays and structures. This use of sizeof is discussed in
Chapters 7 and 9.

You can also use the sizeof operator to obtain information about the
sizes of objects in your C environment. The following, for example, prints
the sizes of the basic data types:

#include <stdio.h>
#include <stdlib.h>

int main(void)
{

printf("TYPE\t\tSIZE\n\n");
printf("char\t\t\d\n". sizeof (char));
printf("short\t\tllsd\n", sizeof (short));
printf("int\t\t\d\n", sizeof (int));
printf (" float\ t\tllsd\n " • sizeof (float));
printf ("double\t\tllsd\n". sizeof (double));
exit (0);

www.manaraa.com

160 6: Operators and Expressions

6.13 Conditional Operator (?:)

Table 6-28: The Conditional Operator.

Operator Symbol Form Operation

conditional ? : a ? b C if a is nonzero result is b; oth­
erwise result is c.

The conditional operator (also called the question-mark colon operator) is
the only ternary (three operands) operator. The conditional operator
(Table 6-28) is really just a shorthand for a common type of if ... else
branch. The if ... else expression

if (x < y)
z = x;

else
z = y;

can be written

z = ((x < y) ? x : y);

The first operand is the test condition. It must be of scalar type. The
second and third operands represent the final value of the expression.
Only one of them is selected, depending on the value of the first operand.
The second and third operands can be of any data type, as long as the two
types are compatible according to the normal conversion rules. For exam­
ple, if the second operand is an int and the third is a double, the result type
is double regardless of which one is selected (i.e., if the int is selected, it is
converted to a double).

The conditional operator is difficult to read and should be used with
care. In certain situations, however, it is handy. For example, in the fol­
lowing statement, we print j if j is greater than zero; otherwise we print k:

printf ("Here is %d", j > 0 ? j : k);

Without the conditional operator, this would be written:

if (j > 0)
printf ("Here is %d", j);

else
printf ("Here is %d", k);

We need to duplicate the print statement, which leads to redundant
code. The version using the conditional operator, therefore, is better in this
case.

www.manaraa.com

6.14 Memory Operators 161

6.14 Memory Operators

There are several operators that enable you to access and dereference
memory locations. We introduced some of them in Chapter 4, and we list
them all in this chapter (Table 6-28) for completeness, but we defer dis­
cussing them in detail until Chapters 7 and 9.

Table 6-29: The Memory Operators.

Operator Symbol Form Operation

address of & &x Get the address of x.

dereference * *a Get the value of the object stored
at address a.

array ele- [] x [5] Get the value of array element 5.
ments

dot x.y Get the value of member y in
structure x.

right-arrow -> p->y Get the value of member y in the
structure pointed to by p.

6.15 Exercises

1. Enclose the following expressions in parentheses the way a C compiler
would evaluate them. (Hint: use Table 6-1).

a) a = b * c == 2;

b) a = f(x) && a > 100;

c) a -- b && x !=y;

d) a = b += 2 + f (2) ;

e) a = s f + x y;

f) a = b » 2 + 4;

g) a = b && a > z ? x = y z;

h) a = * ++ * p;

i) a = b 1\ C & d;

2. Suppose that you want to build a 4-byte long int out of four calls to a
routine called getbyte(), which returns a i-byte value. Write a single
expression that represents such an integer, given that the first call to
getbyte() gets the high-order byte and the next calls get subsequently

www.manaraa.com

162

Program
6-12

6: Operators and Expressions

lower-order bytes. Is your expression portable? If not, is it possible to
make it portable?

3. What is the output of the following program?

main()
{

short i = 0;
printf("%d\n". (i + 1) * (i 1»;
exit (0);

Is this program portable? Explain.

4. Which of the following printf() calls gives a unique portable result?

#inc1ude <stdio.h>
#inc1ude <stdlib . h>

int main(void)
{

printf("\x\n", -0 » 1);
printf ("\x\n". (unsigned) -0 » 1);
printf ("\x\n". (long) 1 « 32);
exi t (0);

5. Write a function called circular_shift{a, nY, which takes a, which is an
unsigned long int, and shifts it left n positions, where the high-order
bits are reintroduced as low-order bits. For example if the binary rep­
resentation of a is

00010110 00111010 01110010 11100101

then the call

circular_shift (a. 5)

should return a long int whose binary representation is

11000111 01001110 01011100 10100010

6. Using shift operators, determine the largest int value that your com­
puter can represent.

7. Write a function that accepts an int and prints its binary representa­
tion. (Hint: use the sizeof operator to ensure that your function works
no matter how big an int is.)

8. Write a function that reads a number in binary form and converts it to
hexadecimal form.

www.manaraa.com

6.15 Exercises 163

9. Which of the following expressions are not portable? Why?

a) x++ * ++y

b) x = ++y - x++

c) x++ / (y - y)

d) -3/x * y

e) y (unsigned) x » 4

f) y x » 4

g) y »= x

h) foo (j++, j ++)

10. Write a function called pack() that accepts four chars and packs them
into a long into The function definition should be

long int pack(a, b, c, d)
char a, b, c, d;

11. Modify the breaklineO function so that it does not print a newline in
the middle of a word.

www.manaraa.com

7
Arrays and Pointers

"Curiouser and curiouser!" said Alice.
Lewis Carroll, Alice in Wonderland

We have already introduced pointers as one of the scalar data types. In
this chapter, we examine pointers more closely and introduce an aggregate
type called an array. Arrays and pointers are closely related in C. To­
gether, they represent some of the most powerful features of the C lan­
guage and probably account, as much as anything, for C's popularity.

In C, an array is a collection of identically typed variables stored con­
tiguously in memory.

Each variable in an array is called an element and can be accessed by
giving the array name plus an index expression called a subscript. A sub­
script value of 0 identifies the initial element, a value of 1 identifies the
next element, and so forth.

The most basic purpose of arrays is to store large amounts of related
data that share the same data type. Suppose that you want to analyze the
temperature fluctuations over the course of a year. To write such a pro­
gram, you first need to store the average temperature for each day. This
requires 365 memory locations. Obviously, it would be extremely tiresome
to declare 365 variables, each with a unique name. Arrays provide a solu­
tion to this problem.

www.manaraa.com

7.1 Declaring an Array 165

7.1 Declaring an Array

You declare an array by placing a pair of brackets after the array name.
To specify the size of an array, enter the number of elements within the
brackets. Figure 7-1 shows the syntax of an array declaration, where array
size is an integer expression. Array initializers are described in Section 7.3.

Figure 7-1: Syntax of an array declaration.

For the array to hold temperatures, you can write

int daily_temp [365] ;

This creates an array called daily Jemp with 365 integer elements. You
can then enter the temperatures of each day with assignment statements,
such as

daily_temp [0] = 38;
daily_temp [1] = 43;
daily_temp [2] = 27;

The objects on the left side of the assignment expressions are called ar­
ray element references because they reference a single array element. Note
that subscripts begin at 0, not 1. The highest legal subscript, therefore, is
always one less than the array's size. For the daily_templJ array, the last
element is daily_temp[364}.

Because subscripts begin with zero, it is confusing to identify members
with words such as "first," "second," and "third." Does the "third" ele­
ment refer to the element with subscript 3 or subscript 2? To avoid this
confusion, we always refer to elements by their subscript number. Also,
the element with subscript ° is referred to as the initial element.

It may seem confusing to have arrays begin at ° instead of 1, but it re­
flects C's philosophy of staying close to the computer architecture. Zero is
a much more natural starting point for computers, even though it may be
a bit more inconvenient for people. In other languages, such as
FORTRAN 77, arrays begin with subscript 1. Although the FORTRAN
method may be more intuitive, it is often more costly because the compiler
must subtract 1 from each subscript reference to get the true internal ad­
dress of an element. The C method can produce more efficient code. Also,

www.manaraa.com

166

Program
7-1

7: Arrays and Pointers

as you will see later in this chapter, the C method makes it very easy to
access array elements through pointers.

It is important to keep in mind the difference between an array declara­
tion and an array element reference. Although they look the same, they
have different functions. In a declaration, the subscript defines the size of
the array. In an array element reference, the subscript determines which
element of the array is to be accessed. For instance,

/* This is a declaration -- the 4 specifies the
* number of elements in the array.
*/

int ar[4] ;

/* This is an array element reference -- the 2
* specifies the particular element to access.
*/

ar[2] = 0;

Returning to our daily temperature example, suppose we want to write
a program that gives us the average temperature for the year. To simplify
the problem, let us assume that you have already assigned temperature
values for every element in the array. The program could be written as
follows:

#include <stdio.h>
#include <stdlib.h>

int maine void)
(

int j, sum=O;
int daily_temp [DAYS_IN_YEAR) ;

/* Assign values to daily_tempe) here. */
for (j=O; j < DAYS_IN_YEAR; ++j)

sum += daily_temp[j] ;
printf ("The average temperature for the year is %d. \n",

sum/DAYS_IN_YEAR);
exi t (0);

The variable i is used to subscript the array. After fetching an element
and adding it to sum, the function increments i so that the next element
can be accessed. When all 365 elements have been summed, the for loop
ends and the printf() function outputs the average.

www.manaraa.com

7.2 How Arrays Are Stored in Memory 167

7.2 How Arrays Are Stored in Memory

To see how arrays are stored in memory, consider the array ar, which is
declared and assigned values by the following statements:

int ar[5); /* declaration */
ar[O) = 15;
ar[l] = 17;
ar[3] = arlO) + ar[l];

The storage for this array is shown in Figure 7-2. We show the array
starting at address 1000, but it could start anywhere in memory. The ac­
tual number of bytes allocated for each element depends on how large an
int is on your computer. Our machine allocates four bytes for an into

Address Contents
Element (in hex) •• ---4 bytes--_.

int ar[S]; OFFC
ar (0) 15;
ar(1] 17; ar [0] 1000 15
ad3] adO) + ar(!]; ar [1] 1004 17

ar [2] 1008 undefined

ar [3] 100C 32

ar [4] 1010 undefined

1014

Figure 7-2: Storage of an array.

Note that ar[2] and ar[4] have undefined values. This means that their
values are unpredictable. The contents of these memory locations are
whatever is left over from the previous program execution. In the pro­
gramming world, undefined values are often called "garbage" or "trash,"
and they produce some of the most pesky bugs because they can cause
different results each time the program is executed. They may have harm­
less values, such as zero, most of the time; yet in rare circumstances, they
may acquire harmful values that cause the program to fail. Frequently,
these bugs are not noticed until after the product has been shipped to cus­
tomers and the harmful values turn up at a customer site. To avoid this
type of bug, you can initialize arrays, as described in the next section.

You can find the size in bytes of an array by using the sizeof operator.
For example, the expression

sizeof (ar)

evaluates to 20 because the array consists of five 4-byte ints. Note that
you use the array name without a subscript reference to get the size of the

www.manaraa.com

168 7: Arrays and Pointers

entire array. If you include a subscript, you get the size of a single element.
For example,

sizeof (ar [0])

evaluates to 4.

7.3 Initializing Arrays

To initialize an array prior to the ANSI Standard, you had to declare the
array outside a function or precede the array declaration with the static
keyword. Both of these methods give the array a quality called fixed dura­
tion, which is discussed in Chapter 8. By default, arrays with fixed dura­
tion have all their elements initialized to zero.

You can also assign different initial values by enclosing specific values
in braces following the array declaration. With ANSI C, you can intialize
both fixed duration and automatic arrays in this manner. The values must
be constant expressions that can be automatically converted to the array
type. For example,

static int a_ar[5]; /* Initializes elements to 0 */
int b_ar[5]={l, 2, 3.5, 4, 5};

results in the storage patterns shown in Figure 7-3. Note that the float­
ing-point 3.5 is converted to the integer value 3.

It is incorrect to enter more initialization values than there are elements
in the array; the compiler should report an error when you try. If you en­
ter fewer initialization values than elements, the remaining elements are
initialized to zero. The declaration

int c_ar[5]= {l,2,3};

results in the following initial values:

c_ar[O] = 1
c_ar[l] = 2
c_ar[2] = 3
c_ar[3] = 0
c_ar[4] = 0

When you enter initial values, you may omit the array size-the com­
piler automatically figures out how many elements are in the array based
on how many initial values are present. For instance,

char d_ar[]={'a' , 'b' , 'c' , 'd'};

creates a four-element array of chars with initial values:

d_ar[O] 'a'
d ar[l] 'b'
d-ar[2] 'c'
d_ar[3] 'd'

www.manaraa.com

7.4 Example: Encryption and Decryption 169

Address Contents

Element (in hex) ... --4 bytes----..

static int a_ar[S] I OFFC
int b_ar[S) = {l, 2,

3.5, 4, 5) ;
a_ar [0] 1000 0

a_ar [1] 1004 0

a_ar [2] 1008 0

a_ar [3] 100C 0

a_ar[4] 1010 0

b_ar [0] 1014 1

b_ar[ll 1018 2

b_ar [2] 101C 3

b_ar [3] 1020 4

b_ar[4] 1024 5

1028

Figure 7-3: Initialization of arrays.

7.4 Example: Encryption and Decryption

Because computers are used to store all sorts of private information, a
great deal of effort goes into making them secure against intruders. On
large computer systems, every file has a protection status that controls
who can access the file and what they can do to it. Users, and sometimes
groups of users, have passwords that they must enter to log onto a com­
puter. These measures provide various levels of protection, but none of
them give total security.

A more robust security technique is to encode files. Every character is
translated into a code character so that the file looks like gibberish to
someone who doesn't know the code. Program 7-2 illustrates a simple en­
coding function that uses an array.

First we set up a 128-element array initialized with random numbers
from 0 through 127. Each element must have a unique value. Our array
initialization actually follows a simple pattern, but ideally the pattern
should be harder to perceive. Real encoders use an algorithm to create the
translation array. The more complex the algorithm, the more difficult it is
for would-be spies to break the code.

www.manaraa.com

170

Program
7-2

/* Return a coded value for a character
*/
#define ILLEGAL_VAL -1
char encode (char chI
{

7: Arrays and Pointers

static unsigned char encoder (128) = { 121, 124, 121,
118, 115, 112, 109, 106, 103, 100, 97, 94, 91. 88, 85,
82, 79, 76, 73, 70, 67, 64, 61, 58, 55, 52, 49, 46,
43, 40, 37, 34, 31, 28, 25, 22, 19, 16, 13, 10, 7, 4,
1, 126, 123, 120, 117, 114, 111, 108, 105, 102, 99,
96, 93, 90, 87, 84, 81, 78, 75, 72, 69, 66, 63, 60,
57, 54, 51, 48, 45, 42, 39, 36, 33, 30, 27, 24, 21,
18, 15, 12, 9, 6, 3, 125, 122, 119, 116, 113, 110,
107, 104, 101. 98, 95, 92, 89, 86, 83, 80, 77, 74, 71,

68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32,
29, 26, 23, 20, 17, 14, 11, 8, 5, 2, 0
} ;

/* Test for illegal character. */
if (ch > 127)

return ILLEGAL_VAL;
else

return encoder[ch)i /* Return coded character.*/

After initializing the array, we test the input argument to make sure
that it is a legal character (remember that unsigned char objects have a
range of ° through 255). If ch is greater than 127, it is not a printable
character so we return -1 to signify an input error. If ch is less than or
equal to 127, we use it as a subscript expression and return the element
referenced by that subscript. For every value of ch from ° through 127,
there is a unique translation code. If ch equals 0, for instance, the function
returns 127; if ch equals 1, the function returns 124. To see how it works,
consider the Program 7-3, which invokes encode{}.

If your computer uses the ASCII representation of characters, program
execution results in the following:

w D Y B

The phrase "What?" is coded as "wDY B" (the space between Y and B
is an unprintable character). If your computer uses some other form of
character representation, such as EBCDIC, the program will still work, but
it will print different characters. Anyone trying to read a file that contains
these encoded characters will be very confused, to say the least. Of course,
authorized readers need a decoder that has a reverse translation table to
translate the file back to its original form.

www.manaraa.com

7.5 Pointer Arithmetic

Program #include <stdio.h>
7-3 #include <stdlib.h>

int maine void
(

char c[5];
int i;
c [0] encode ('W');
c[l] = encode('h');
c[2] = encode ('a ');
c[3] = encode ('t');
c[4] = encode ('?');
for (i=O; i< 5; ++i)

printf("%d\t". c[i));
exit (0);

7.5 Pointer Arithmetic

171

The C language allows you to add and subtract integers to and from
pointers. If p is a pointer, the expression

p+3

is perfectly legal, meaning three objects after the object that p points to.
Because p holds an address, performing arithmetic on p generates a new
address value. However, rather than simply adding 3 to p, the compiler
multiplies the 3 by the size of the object that p points to. This is called
scaling.

Suppose, for example, that the address value held by p is 1000. If p is
declared as a pointer to a 4-byte long int, the 3 in p+3 is multiplied by 4.
The value of p+3, therefore, is 1012. On the other hand, if p is declared as
a pointer to a char, p+3 would equal 1003. In this way, the expression p+3
always means 3 objects after p, regardless of the type of object that p
points to.

7.5.1 Pointer Subtraction

It is legal to subtract one pointer value from another, provided that the
pointers point to the same type of object. This operation yields an integral
value that represents the number of objects between the two pointers. If
the first pointer represents a lower address than the second pointer, the
result is negative.

www.manaraa.com

172

For example,

&a [3] - &a [0]

evaluates to 3, but

&a [0] - &a [3]

evaluates to -3.

7: Arrays and Pointers

It is also legal to subtract an integral value from a pointer value. This
type of expression yields a pointer value. The following examples illustrate
some legal and illegal pointer expressions:

long *pl, *p2;
int j;
char *p3;

p2 = pi + 4; legal

j = p2 pi; legal-j is assigned 4

j = pi - p2; legal-j is assigned -4

pi = p2 - 2; legal-compatible pointer types

p3 = pi - 1; ILLEGAL-different pointer types

j = pi - p3; ILLEGAL-different pointer types

7.5.2 Null Pointer

The C language supports the notion of a null pointer-that is, a pointer
that is guaranteed not to point to a valid object. A null pointer is any
pointer assigned the integral value zero. For example,

char *p;
p = 0; /* make p a null pointer */

In this one case-assignment of zero--you do not need to cast the in­
tegral expression to the pointer type.

www.manaraa.com

7.6 Passing Pointers as Function Arguments 173

Null pointers are particularly useful in control-flow statements because
the zero-valued pointer evaluates to false, whereas all other pointer values
evaluate to true. For example, the following while loop continues iterating
until p is a null pointer:

char *p;

while (pI
{

/* iterate until p is a null pointer */

This use of null pointers is particularly prevalent in applications that
use arrays of pointers, as described later in this chapter.

7.6 Passing Pointers as Function Arguments

Program
7-4

As we mentioned in Chapter 4, the compiler complains if you try to mix
different types of pointers. The one exception to this rule occurs when you
pass pointers as arguments. In the absence of function prototyping
(described in Chapter 10), the compiler does not check to make sure that
the type of the actual argument is the same as the type of the formal ar­
gument. If the types are different, strange behavior can result. The fol­
lowing program shows what can happen if you pass a pointer to one type
but declare it as a pointer to a different type on the receiving side.

#include <stdlib.h>
#include <stdio.h>

void clr(long *P)
(

p = 0; / Store a zero at location p. */

int main(void)
(

static short s[3) = {l. 2. 3};
clr (&s [1)); /* Clear element 1 of s [}. * /
printf{ "s[O]=%d\ns[1]=%d\ns(2)=%d\n". s{OJ. s[l). s[2))
exi t (0);

www.manaraa.com

174 7: Arrays and Pointers

First we assign the values 1, 2, and 3 to 5[0}, 5[1}, and 5[2}, respec­
tively. Then we send the address of element 1 to the clrO function, which
sets the element equal to 0. The values of 5[0}, 5[1}, and 5[2} should now
be 1,0, and 3. The output, however, is

s[O] = 1
s[l] = 0
s[2] = 0

The problem is that the pointer p in the clrO function is declared as a
pointer to a long integer. When zero gets assigned to the address of p, four
bytes are zeroed. 5[1}, which is a short integer, is only two bytes long, so
two extra bytes get cleared. Because arrays are stored contiguously in
memory, the two extra bytes are the ones allocated for 5[2}. Figure 7-4
shows what transpires. It is worth taking some time to understand this
example because it illustrates an important concept in the C language.

7.7 Accessing Array Elements Through Pointers

One way to access array elements is to enter the array name followed by a
subscript. Another way is through pointers. The declarations

short ar[4]i
short *Pi

create an array of four variables of type short, called ar[O}, ar[l}, ar[2},
and ar{3], and a variable named p that is a pointer to a short. Using the
"address of" operator (&), you can now make the assignment,

P = &ar[O] i

which assigns the address of array element ° to p. If we dereference p,

*p

we get the value of element ar[O].
Until the value of p is changed, the expressions ar[O} and *p refer to

the same memory location. Due to the scaled nature of pointer arithmetic,
the expression

* (p+3)

refers to the same memory contents as

ar[3]

In fact, for any integer expression e,

* (p+e)

is the same as

ar[e]

www.manaraa.com

7.7 Accessing Array Elements Through Pointers

Before *p=O:

After *p=O:

Variable Address Contents

5[0] {
s [1] {
s [2] {

p

+--1 byte--.

1000 00

1001 01

1002 00

1003 02

1004 00

1005 03

2000 00

2001 00

2002

2003

10

02

Variable Address Contents

s [0] {
s [1] {
s [2] {

p

+--1 byte--.

1000 00

1001 01

1002 00

1003 00

1004 00

1005 00

2000 00
2001 00

2002

2003

10
02

Figure 7-4: Because P points to a long int, four bytes are set to zero.

175

l
*p is four
bytes long

l
*p is four
bytes long

www.manaraa.com

176 7: Arrays and Pointers

This brings us to the first important relationship between arrays and
pointers: Adding an integer to a pointer that points to the beginning of an
array, and then dereferencing that expression, is the same as using the in­
teger as a subscript value to the array.

The second important relationship is that an array name that is not
followed by a subscript is interpreted as a pointer to the initial element of
the array. That is, the expressions

ar

and

&ar[O]

are exactly the same. Combining these two relationships, we arrive at the
following important equivalence:

ar[n] is the same as "'(ar + n)

This relationship is unique to the C language and is one of C's most
important features. When the C compiler sees an array name, it translates
it into a pointer to the initial element of the array. Then the compiler in­
terprets the subscript as an offset from the base address position. For ex­
ample, the compiler interprets the expression ar{2] as a pointer to the first
element of ar, plus an offset of 2 elements. Due to scaling, the offset de­
termines how many elements to skip, so an offset of 2 means skip two
elements. The two expressions

ar[2]
* (ar+2)

are equivalent. In both cases, ar is a pointer to the initial element of the
array and 2 is an offset that tells the compiler to add two to the pointer
value.

Because of this interrelationship, pointer variables and array names can
be used interchangeably to reference array elements. It is important to re­
member, however, that the values of pointer variables can be changed
whereas array names cannot be changed. This is because an array name by
itself is not a variable-it refers to the address of the array variable. You
cannot change the address of variables. This means that a naked array
name (one without a subscript or indirection operator) cannot appear on
the left-hand side of an assignment statement. For instance,

float ar[5], *p;

This difference between pointers and arrays is an important distinction
to grasp. We encounter this distinction again when we describe character
strings later in this chapter. In the following examples, note that scaling
allows you to use the increment and decrement operators to point to the
next or previous element of an array.

www.manaraa.com

7.8 Passing Arrays as Function Arguments 177

p = arj /* legal: same as p = &ar[O] */
ar = pj /* illegal: cannot assign to an array address */
&p = arj /* illegal: cannot assign to a pointer address */
ar++j /* illegal: cannot increment an array address */
ar[l] *(p+3)j /* legal: ar[l] is a variable */
p++j /* legal: you may increment a pointer variable */

7.8 Passing Arrays as Function Arguments

In C, an array name that appears as a function argument is interpreted as
the address of the first element of the array. For instance,

main()
{

extern float func(float x, farray [5])j

x = func(farray)j /* Same as func (&farray[O]) */

On the receiving side, you need to declare the argument as a pointer to
the initial element of an array. There are two ways to do this:

or

func(float *ar)
{

func(float ar[])
{

The second example declares ar to be an array of indeterminate size.
You may omit the size specification because no storage is being allocated
for the array. The array has already been created in the calling routine,
and what is being passed is really a pointer to the first element of the ar­
ray. Because the compiler knows that array expressions result in pointers
to the first element of the array, it converts ar into a pointer to a float, just
like the first declaration. Functionally, therefore, the two versions are
equivalent. In terms of readability, however, the second version may be
superior because it emphasizes that the object being passed is the base ad­
dress of an array. In the first version, there is no way of knowing whether
ar points to a single float or to the beginning of an array of floats.

www.manaraa.com

178

Program
7-5

7: Arrays and Pointers

It is also legal to declare the size of the array in an argument declara­
tion:

func(float ar[6])
{

However, the compiler uses the size information only for bounds checking
(if the compiler supports this feature). (See the Bug Alert on page 181 for
more about bounds checking.) Also, you must specify all but the first di­
mension size of a multidimensional array. This is described in Section
7.11.

The choice of declaring a function argument as an array or as a pointer
has no effect on the compiler's operation (unless your compiler supports
bounds checking)-it is purely for human readability. (This may change in
the future. See the shaded box on page 283 for a discussion about ANSI's
future plans for array parameters.) To the compiler, ar simply points to a
float; it is not an array. Because of the pointer-array equivalence, however,
you can still access ar as if it were an array. But you cannot find out the
size of the array in the calling function by using the sizeof operator on the
argument. For example,

#include <stdio.h>
#include <stdlib . h>

int maine void)
(

void print_size()i
float f_array[lO] i

printf("The size of f_array is: %d\n"
• sizeof(f_array))i

print_size (f_array)i
exit (0);

void print_size (float arg []
(

printf("The size of arg is: %d\n", sizeof(arg));

On our computer, the results of running this program are

The size of f_array is: 40
The size of arg is: 4

The variable f_array is an array of ten 4-byte floats, so the value 40 is
its correct size in bytes. The variable arg, on the other hand, is converted
to a pointer to a float. On our machine, pointers are four bytes long, so
the size of arg is 4. Because it is impossible for the called function to de-

www.manaraa.com

7.9 Sorting Algorithms 179

duce the size of the passed array, it is often a good idea to pass the size of
the array along with the base address. This enables the receiving function
to check array boundaries:

#define MAX_SIZE 1000

void foo(float f_array[], int f_array_size)i
{

if (f_array_size > MAX_SIZE)
{

printf ("Array too large. \n") i
exit (1) i

You can obtain the number of elements in an array by dividing the size
of the array by the size of each element. On the calling side, you would
write

foo(f_array, sizeof(f_array)/sizeof(f_array[O]))i

Note that this expression works regardless of the type of element 10

f-array[].

7.9 Sorting Algorithms

Sorting a list of objects into alphabetical or numerical order is a common
programming operation and is a classic application of arrays. Although
the idea of sorting is simple enough, it turns out that the process can be
complicated. There are numerous sorting algorithms, and the mathemati­
cal analyses for deciding which are the most efficient are the subjects of
many lengthy volumes.

In this section, we show one of the simpler algorithms, called a bubble
sort. The idea behind a bubble sort is to compare adjacent elements,
starting with the first two, and interchange them if the first is larger than
the second. After comparing the first two elements, we compare the sec­
ond and third, then the third and fourth, and so on until we reach the end
of the array. Comparing all the adjacent pairs is termed a pass. If in the
first pass we need to interchange any of the pairs, we need to make an­
other pass. We keep making passes until the array is in sorted order.

To see exactly what is happening we have added a couple of printf()
statements that show the current status of the array before each pass.

www.manaraa.com

180

Program
7-6

Program
7-7

7: Arrays and Pointers

/* Sort an array of ints in ascending order using
* the bubble sort algorithm .
*/
#define FALSE 0
#define TRUE 1
#include <stdio .h>

void bubble_sort (int list[). int list_size
{
int j. k . temp, sorted = FALSE;
whi Ie (! sorted)
{

sorted = TRUE; /* assume list is sorted */
/* Print loop : not part of bubble sort algorithm */
for (k = 0; k < list_size; k++) {

printf ("%d\t". list[k]);
printf ("\n");

} /* End of print loop */
for (j = 0; j < list_size - 1; j++) (

if (list [j] > list [j+l])
{

/* At least 1 element is out of order */
sorted = FALSE;
temp = list [j J ;
list (j J = list [j+lJ ;
list(j+1J = temp;
}

} /* end of for loop */
/* end of while loop */

The function accepts two parameters, a pointer to the first element of
an array of ints and an int representing the size of the array.

The following program calls bubble_sartO with a lO-element array.

#include <stdlib.h>

int main(void)
{

static int list[] = (13. 56, 23. 1. 89. 58. 20, 125, 86.
3 } ;

bubble_sort (list. sizeof(list)/sizeof(1ist[Oj» ;
exit (0);

Note how we pass the number of elements in the array using the sizeof
operator. This is a useful technique in C because it is portable. We can add
new elements to the array, and the size of the array elements can vary, but
we never need to change the function call. Program execution results in the
following output:

www.manaraa.com

7.9 Sorting Algorithms

13
13
13

1
1
1
1
1
1

56 23 1 89
23 1 56 58

1 23 56 20
13 23 20 56
13 20 23 56
13 20 23 3
13 20 3 23
13 3 20 23

3 13 20 23

58 20 125 86
20 89 86 3
58 86 3 89
58 3 86 89

3 58 86 89
56 58 86 89
56 58 86 89
56 58 86 89
56 58 86 89

3
125
125
125
125
125
125
125
125

181

The bubble sort is not very efficient, but it's a simple algorithm that il­
lustrates array manipulation. The standard runtime library contains a
much more efficient sorting function called qsort(). We describe how to
use qsort() in Chapter 10.

Bug Alert Walking Off the End of an Array

Unlike many programming languages. C does not require compilers to
check array bounds. (A few compilers include options that let you check
anyway.) This means that you can attempt to access elements for which
no memory has been allocated. The results are unpredictable. Some­
times you will access memory that has been allocated for other vari­
ables. Sometimes you will attempt to access special protected areas of
memory and your programs will abort. Usually this type of error occurs
because you are off by one in testing for the end of the array. For ex­
ample, consider the following program, which attempts to initialize
every element of an array to zero:

maine)
{

int ar(10) , j;
for (j=O; j <= 10; j++)

ar [j) = 0;

Because we have declared arfJ to hold ten elements, we can validly
refer to elements 0 through 9. Our for loop, however, has an off-by-one
bug in it. The loop runs from 0 through 10, so element 10 also get as­
signed zero. Because there is no element 10, the compiler overwrites a
portion of memory, very likely the portion of memory reserved for j.
This will produce an infinite loop because j will be reset to zero.

You can avoid this type of error by keeping your functions small and
by testing each one after it is written. This way, you can catch these
bugs early, before they become a major problem

www.manaraa.com

182 7: Arrays and Pointers

7.10 Strings

One of the most common uses of arrays is to store strings of characters. A
string is an array of characters terminated by a null character. A null char­
acter is a character with a numeric value of zero. It is represented in C by
the escape sequence: '\0'. A string constant, sometimes called a string lit­
eral, is any series of characters enclosed in double quotes. It has a data
type of array of char, and each character in the string takes up one byte. In
addition, the compiler automatically appends a null character to designate
the end of the string.

7.10.1 Declaring and Initializing Strings

To store a string in memory, you need to declare an array of type char.
You may initialize an array of chars with a string constant. For example.

char str[] = "some text";

The array is one element longer than the number of characters in the string
to accommodate the trailing null character. str[], therefore, is ten charac­
ters in length. If you specify an array size, you must allocate enough char­
acters to hold the string. In the following example, for instance, the first
four elements are initialized with the characters 'y', 'e', 's', and '\0'. The
remaining six elements receive the default initial value of zero:

char str[lO] = "yes";

The following statement, however, is illegal:

char str[3] = "four"; /* illegal */

ANSI C compilers allow you to specify an array size that does not include
the trailing null character. The following declaration causes the compiler
to allocate four characters, initialized to 'f', 'a', 'u', and 'r':

char str[4] = "four"; /* no trailing null */

You may also initialize a char pointer with a string constant. The dec­
laration

char *ptr = "more text";

also creates an array of characters initialized with "more text," but it is
subtly different from the preceding declaration. Both declarations allocate
the same amount of storage for the string and initialize the memory loca­
tions with the same values, but the pointer declaration creates an addi­
tional4-byte variable for the pointer (see Figure 7-5).

All subsequent uses of the array name refer to the address of the array's
initial element. This address, as we said before, cannot be changed. The
pointer is a variable that is initialized with the address of the array's initial

www.manaraa.com

7.10 Strings 183

element. However, you can assign a different address value to the pointer.
In this case, the address with which it was initialized will be lost.

Element Address Contents
...... 1 byte-.

char str [] "some text"; OFFF

str (0) 1000 '5'

str [1) 1001 '0'

str (2) 1002 'm'

str(3) 1003 'e'
, ,

str (4) 1004

str [5) 1005 't'

str (6) 1006 'e'

str (7) 1007 'x'

str(8) 1008 't'

str [9] 1009 '\0'

char *ptr "some text";
100A 's'

100B '0'

loDe 'm'

100D 'e'
, ,

100E

.. 4 bytes 100F 't'

1010 'e'
ptr 2000 100A

1011 'x'

1012 't'

1013 '\0' ,

Figure 7-5: Storage of a string.

7.10.2 String Assignments

The reason you can initialize a pointer with a string constant is that a
string is an array of chars, so C treats string constants like other arrays-it
interprets a string constant as a pointer to the first character of the string.
This means that you can assign a string constant to a pointer that points

www.manaraa.com

184

Program
7-8

7: Arrays and Pointers

to a char. However, you must be careful about allocating enough memory
for the string, as shown in the following example.

#include <stdlib . h>

int main(void)
{

*/

char array [10] ;
char *ptr1 = "10 spaces";
char *ptr2;
array = "not OK": /* cannot assign to an address */
array[S) = 'A'; /* OK */
ptrl[S) = 'B'; /* OK */
ptr1 = "OK";
ptr1[S] = 'C'; /* "legal" but runtime error due to prior

/* assignment */
ptr2 = "not OK"; / type mismatch */
ptr2 = "OK";
exit(0) ;

This example highlights many of the problems that beginners have with
pointers, arrays, and strings, so we'll discuss each assignment in detail.

array = "not OK";

array represents the address of the initial element of the array, so it cannot
be changed. Note, however, that the operand types agree because the
string "not OK" is interpreted as a pointer to the first character, n.

array [5] = 'A';

This is a simple assignment to element 5 of the arrayfJ array.

ptrl[5] = 'B';

ptrl is a pointer to a char that has been initialized to point to the string
" 1 0 spaces," which exists somewhere in memory. Because of the
pointer-array equivalence, this assignment changes the value of element 5,
so that ptrl now points to a string whose contents are "10 spRees. " Note
that this assignment does not change the value of ptrl.

ptrl = "OK";

This assignment changes the value of ptrl so that it now points to a
string "OK", which exists somewhere else in memory.

ptrl [5] = 'C';

Due to the prior assignment, ptrl points to a string whose contents are
"OK." Including the terminating null character, this string takes up three
bytes of memory. This assignment attempts to assign a value to a memory
location 3 bytes beyond the terminating null character in "OK," thereby
accessing memory whose contents are unknown. This will not produce a

www.manaraa.com

7.10 Strings 185

compile-time error, but it will very likely produce a runtime error or erro­
neous results.

*ptr2 = "not OK";

In this case, we are attempting to assign a value to the char to which
ptr2 points. The string is interpreted as the address of the first character n,
so this assignment is attempting to assign an address value to a char. Ac­
cording to the ANSI Standard, this is illegal-address values may be as­
signed only to pointer variables. Older compilers may accept this syntax,
but they should at least issue a warning.

ptr2 = "OK";

This assignment illustrates that you can assign a string to a char
pointer even if you have not initialized the pointer. There is no difference
between this statement and the statement

ptrl = "OK";

7.10.3 Strings vs. Chars

It is important to recognize the difference between string constants and
character constants. In the following two declarations, one byte is allo­
cated for ch but two bytes are allocated for the string "a" (an extra byte
for the terminating null character), plus additional memory is allocated for
the pointer ps.

char ch = 'a'; /* One byte is allocated for 'a' */

/* In the following declaration, two bytes are
* allocated for "a", plus an implementation-
* defined number of bytes are allocated for
* the pointer ps.
*/

char *ps = "a";

It is legal to assign a character constant through a dereferenced pointer:

*p = 'a';

But it is incorrect to assign a string to a de referenced char pointer:

p = "a"; / INCORRECT */

Since a string is interpreted as a pointer to a char and a dereferenced
pointer has the type of the object that it points to, this assignment at­
tempts to assign a pointer value to a char variable. This is illegal. By the
same token, it is legal to assign a string to a pointer (without dereferencing
it), but it is incorrect to assign a character constant to a pointer:

p = "a"; /* OK */
p = 'a'; /* Illegal - p is a pointer, not a char.*/

www.manaraa.com

186

Program
7-9

7: Arrays and Pointers

The last assignment attempts to assign a char value to a pointer vari­
able. An ANSI-conforming compiler should issue an error. Some older
compilers merely report a warning.

The crucial observation to be made is that initializations and assign­
ments are not symmetrical: You can write

char *p = "string";

but not

*p = "string";

Note that this is true of assignments and initializations of all data
types, not just character arrays. For instance,

float f;
float *pf = &f; /* OK */
pf = &f; / ILLEGAL */

7.10.4 Reading and Writing Strings

You can read and write strings with the printf{} and scanf{} functions by
using the %s format specifier. For scanf{}, the data argument should be a
pointer to an array of characters that is long enough to store the input
string. The input string is terminated by any space character. After reading
in the input characters, scanf{} automatically appends a null character to
make it a proper string. On the printf{} side, the data argument should be
a pointer to a null-terminated array of characters. printf() outputs succes­
sive characters until it reaches a null character. The following program
reads a string from the standard input device and then prints it out ten
times.

#include <stdio.h>
#include <stdlib.h>

#define ~CHAR 80

int maine void)
{

char str (MAX_CHAR];
int i;
printf (" Enter a string: ,,);
scanf("\s", str I;
for (i = 0; i < 10; ++i)

printf("\s\n". str);
exi t (0);

Note that we can use the array name as the data argument because a
naked array name is really a pointer to the initial element of the array.
One drawback of this program is that it can fail if the input string is more

www.manaraa.com

7.10 Strings

Program
7-10

Program
7-11

Program
7-12

187

than MAX_CHAR characters. We leave it as an exercise to the reader to
remove this deficiency.

In addition to printf() and scanf(), the C runtime library contains many
functions that manipulate strings. In this section, we show some sample
source code for a few of them to illustrate some of the concepts behind
arrays and pointers.

7.10.5 The String Length Function

Probably the simplest string function is strlen{}, which returns the number
of characters in a string, not including the trailing null character. Using
arrays, strlen{} can be written:

int strlen(char str[])
(

int i=O;
while (str[i])

++i;
return i;

We test each element of str, one by one, until we reach the null charac­
ter. If str[i] is the null character, it will have a value of zero, making the
while condition false. Any other value of str[i] makes the while condition
true. Once the null character is reached, we exit the while loop and return
i, which is the last subscript value and, conveniently, the length of the
string.

You could also write the function using a for statement instead of a
while statement:

int strlen(char str[])
{

int i;
for (i=O; str[i]; ++i)

; /* null statement in for body */
return i;

The pointer version of strlen{} would be:

int strlen(char *str
{

int i;
for (i = 0; ·str++; i++)

; /* null statement */
return i;

www.manaraa.com

188 7: Arrays and Pointers

The expression

*str++

illustrates a common idiom in C. Since the ++ operator has the same
precedence as the * operator, associativity rules take effect. Both operators
bind from right to left, so the expression causes the compiler to:

1. Evaluate the post-increment (++) operator. Because ++ is a
post-increment operator, the compiler passes str to the next opera­
tor but makes a note to increment str after the entire expression is
complete.

2. Evaluate the indirection (*) operator, applied to str.

3. Complete the expression by incrementing str.

7.10.6 String Concatenation

The ANSI Standard states that two adjacent string literals will be concate­
nated into a single null-terminated string. For example, the statement

printf ("one .. " "two •.• " "three\n");

is treated as if it had been written

printf ("one .. two ... three\n");

Note that the terminating null characters of the string(s) are not in­
cluded in the concatenated string. This feature is particularly useful with
regard to macros that expand to string literals, as described in Chapter 11.
String concatenation can also be used to break up long strings that would
otherwise require the continuation character. For example, the statement

printf("This is a very long string that\
cannot fit on one line\n");

can be written

printf("This is a very long string that"
"cannot fit on one line\n");

As this example illustrates, stting concatenation (combined with the
fact that the compiler ignores the spaces between tokens) gives you greater
formatting flexibility.

www.manaraa.com

7.10 Strings

Program
7-13

Program
7-14

Program
7-15

189

7.10.7 String Copy Function

The following function, called strcpy(), copies a string from one array to
another.

/* Copy 82 to sl */
void strcpy(char sl(], char s2[])
{

int i;

for (i=O; s2 [i]; ++i)
51 [iJ = s2 [i] ;

sl[++i] :: 0;

Note that we need to explicitly append a null ch~racter because the
loop ends before the terminating null character is copied. Note also that
we must use the prefix increment operator in the expression

s2 [++iJ

We can rewrite this function using pointers as follows:

void strcpy(char *sl, char *s2)
{

int i;

for (i::O; * (s2+i); ++i)
* (sl+i) = * (s2+i) ;

sl [++iJ = 0;

Due to the array-pointer relationship described earlier, your compiler
should produce exactly the same code for both the array and pointer ver­
sions. The choice of which version to use, therefore, revolves around read­
ability. We feel that the array version is more straightforward. Although
both versions are perfectly fine and will work correctly, a superior version
that runs faster on most machines is the following:

void strcpy(char *sl, char *82)
{

while (*51++ = *82++)
; /* null statement */

This version utilizes just about all of the shortcuts that C provides. In­
stead of adding an offset to the string pointer, we just increment it with
the post-increment operator. The result of the assignment is used as the
test condition for the while loop. Remember that even an assignment ex­
pression has a value. If *s2 equals zero (which it will on the terminating

www.manaraa.com

190 7: Arrays and Pointers

null character), the entire assignment expression will equal zero and the
while loop will end. By using the assignment expression as the test condi­
tion, we no longer need an extra statement to assign the terminating null
character. Note that we use a postfix increment operator instead of a pre­
fix operator. If we used ++ before the variable

(* (++81))

the function would not work because it would always skip the initial ele­
ment.

We say this version is "superior," but perhaps we should qualify this
term. This version is superior in the sense that it produces the most ef­
ficient machine code. At first blush, it may seem less readable than our
first version because so many things are happening at once. To an experi­
enced C programmer, however, it is more readable because seasoned C
programmers are familiar with the techniques being used. Very often,
there is a give-and-take relationship between readability and efficiency.
The decision as to which quality is more important depends to a large de­
gree on your application and your resources. If you have unlimited CPU
power and memory, the question of efficiency should take a backseat to
readability. If it is important that your program runs fast and occupies a
small amount of memory, you may have to make some sacrifices to read­
ability. The efficient version of strcpy() illustrates the power and elegance
of the C language. Do not be discouraged, though, if you feel uncomfort­
able with this version. Like any foreign language, the C language is full of
idioms that take time to learn.

7.10.8 Pattern Matching

The function shown in Program 7-16 is a pattern-matching function. Al­
though not part of some C libraries, this is nevertheless a common and
useful function. (In the ANSI C runtime library, this function is called
strstr(), but we call it pacmatch().) It accepts two arguments, both point­
ers to character strings. It then searches the first string for an occurrence of
the second string. If it is successful, it returns the byte position of the oc­
currence; if it is unsuccessful, it returns -1. For example, if the first string is
"Everybody complains about the weather but nobody ever does anything
about it." and the second string is "the weather," the function would re­
turn 26 because "the weather" starts at element 26 of the first string.

There are two loops, one nested within the other. The outer loop in­
crements ; until it reaches the end of strl. The inner loop compares the
current character in strl with the first character in str2. If they are equal, it
tests the next character in each string. The loop ends either when the char­
acters in the two strings no longer match or when there are no more char­
acters in str2. If the loop ends because there are no characters left, the
strings match and we return j, which is the byte position in strl. If the

www.manaraa.com

7.10 Strings

Program
7-16

191

loop ends because the strings do not match, we jump back to the outer
loop and test the next character in strl. If we reach the end of strl without
a match, we return -1.

#include <stdio.h>
#include <string.h>
1* Return the position of str2 in strl; -1 if not
* found.
*1

int pat~atch(char str1[). char str2[)
{

int j. k;
1* test str1[j] with each character in str2[]. If
* equal, get next char in str1[]. Exit loop if we
* get to end of strl[]. or if chars are equal.
wi

for (j=Oi j < strlen(str1)i ++j)
{

for (k=O; k < strlen(str2)
&& (str2[k] str1[k+j])i k++)i

1* Check to see if loop ended because we arrived at
* end of str2. If so, strings must be equal.
wi

if (k == strlen(str2 »
return ji

return -1;

The value -1 is convenient as a failure indicator because there is no
possibility of ambiguity. If the pattern match is successful, a nonnegative
number will be returned. Most functions in the C library return either -1
or 0 as a failure signal. In this example, we cannot return 0 for failure be­
cause 0 will be returned if the pattern match is successful on the initial
element of str2.

The pacmatchO function has a serious flaw. It calls strlenO with each
iteration of the for loop. This is a waste of computer cycles because the
string length never changes. We can remove this problem by storing the
string length in a variable, as shown in Program 7-17.

This second version requires two extra variables, but the savings in
CPU effort are well worth the extra memory allocation. An even more
efficient version of this function is shown in program 7-18. Again, al­
though it is more efficient, it may be less readable to you. However, the
more programs you see that use these idioms and shortcuts, the more
readable they will become.

www.manaraa.com

192

Program
7-17

#include <stdio.h>
#include <string.h>

7: Arrays and Pointers

/* Return the position of str2 in str1; -1 if not
* found.
*/

pat-match(char str1[], char str2[])
{

int j, k;
int length1
int length2

strlen (strl);
strlen (str2) i

for (j=O; j < length1; ++j)
{

for (k=O; k < length2; k++)
if (str2[kJ 1= str1(k+j)

break;
if (k == length2)

return j;

return -1;

To show how to use paCmatch(), we need to write a main() routine
that reads in a string and a pattern to be matched. However, we can't use
scanf(} and %s because scanf(} stops assigning characters to the array as
soon as a space character is encountered. If a string or pattern contains a
space, the program won't work. Fortunately, there is another runtime rou­
tine, called gets(), that reads a string from the terminal (including spaces)
and assigns the string to a character array. The gets() function takes one
argument, which is a pointer to the character array. Characters are read
from the terminal until a linefeed or end-of-file is encountered. When we
use this function, we must be sure to make the character array large
enough to hold the longest possible input string. Program 7-19 shows how
we might call pacmatch().

A typical execution of the program would be:

Enter str: To be or not to be, that is the question.
Enter pattern to be matched: to be
The pattern was matched at position 13

The first "To be" is not matched because the "T" is capitalized: the
pattern-matching function is case sensitive.

In addition to the string functions used in the previous examples, there
are many others in the Standard library (see Table 7-1).

www.manaraa.com

7.10 Strings

Program
7-18

/* Return the first occurrence of str2 in str1
* using pointers instead of arrays; return -1
* if no match is found.
*/

pat~atch(char *str1 , char *str2)
{

char *p, *q, *substr:

/* Iterate for each character position in str1 */
for (substr = str1: *substr : substr++)
{

p = substr;
q = str2:
/* See if str2 matches at this char position */
while (*q)

if (*q++ 1= *p++)
go to no_match:

/* Only arrive here if every char in str2
* matched . Return the number of characters
* between the original start of strl and the
* current character position by using pointer
* subtraction.
*/

return substr . strl;
/* Arrive here if while loop couldn't match str2 .

* Since this is the end of the for loop, the
* increment part of the for will be executed
* (substr++), followed by the check for
* termination (*substr), followed by this loop
* body . We have to use goto to get here because
* we want to break out of the while loop and
* continue the for loop at the same time . Note
* that the semicolon is required after the label
* so that the label prefixes a statement (albeit
* a null one).
*/

no_match : :
J
/* We arrive here if we have gone through every

* character of strl and did not find a match.
*/

return ,1;

193

www.manaraa.com

194 7: Arrays and Pointers

7.11 Multidimensional Arrays

Program
7-19

An array of arrays is a multidimensional array and is declared with con­
secutive pairs of brackets. For instance,

/* In the following, x is a 3-element array of
* 5-element arrays.
*/

int x [3] [5] ;

/* In the following, x is a 3-element array of
* 4-element arrays of 5-element arrays.
*/

char x [3] [4] [5];

Although a multidimensional array is stored as a one-dimensional se­
quence of elements, you can treat it as an array of arrays. For example,
consider the following 5 x 5 "magic square." It is called magic because the
rows, columns, and diagonals all have the same sum.

17

23

4

10

11

#include <stdio.h>
#include <stdlib.h>

24

5

6

12

18

1 8

7 14

13 20

19 21

25 2

extern int pat~tch(char[], chart]);

int main(void)
(

15

16

22

3

9

char first_string[100] , pattern [100] ;
int pos;

printf("Enter main string:");
gets(first_string);
printf ("Enter substring to find : ");
gets (pattern);
pos = pat_match(first_string, pattern);
if (pos == -1)

printf("The substring was not matched.\n");
else

printf("Substring found at position IIsd\n"
, pos);

exit (0);

www.manaraa.com

7.11 Multidimensional Arrays 195

Table 7-1: String Functions in the Standard library. See Appendix A for a
more complete description of these routines.

Function

strcpy()

strncpy()

strcat()

strncat()

strcmp()

strncmp()

strchr()

strcoll()

strcspn()

strerror()

strlen()

strpbrk()

strrchr()

Description

Copies a string to an array.

Copies a portion of a string to an array.

Appends one string to another.

Copies a portion of one string to another.

Compares two strings.

Compares two strings up to a specified number of characters.

Finds the first occurrence of a specified character in a string.

Compares two strings based on an implementation-defined
collating sequence.

Computes the length of a string that does not contain speci­
fied characters.

Maps an error number with a textual error message.

Computes the length of a string.

Finds the first occurrence of any specified characters m a
string.

Finds the last occurrence of any specified characters in a
string.

strspn() Computes the length of a string that contains only specified
characters.

strstr() Finds the first occurrence of one string embedded in another.

strtok() Breaks a string into a sequence of tokens.

strxfrm() Transforms a string so that it is suitable as an argument to
strcmp().

To store this square in an array, we could make the following declara­
tion:

int rnagic(5) [5) =
{ {17 , 24 , 1 , 8 , 15 },

{23 , 5 , 7 , 14 , 16 },
{ 4 , 6 , 13 , 20 , 22 },
{10 , 12 , 19 , 21 , 3 },
{11 , 18 , 25 , 2 , 9 }

} ;

In the initialization, each row of values is enclosed by braces.

www.manaraa.com

196 7: Arrays and Pointers

To access an element in a multidimensional array, you specify as many
subscripts as are necessary. Multidimensional arrays are stored in
row-major order, which means that the last subscript varies fastest. For
example, the array declared as

int ar[2] [3] ={ { 0, L 2 },
{ 3, 4, 5 }

} ;

is stored as shown in Figure 7-6.
The array reference

ar [1] [2]

is interpreted as

* (ar[l] + 2)

which is further expanded to

* (* (ar+1) +2)

Recall that ar is an array of arrays. When 'f(ar+l) is evaluated, there­
fore, the 1 is scaled to the size of the object, which in this case is a
3-element array of ints (which we assume are four bytes long), and the 2 is
scaled to the size of an int:

* (int *) ((char *) ar + (1*3*4)) + (2*4))

We put in the (char *) cast to turn off scaling because we have already
made the scaling explicit. The (int *) cast ensures that we get all four bytes
of the integer when we dereference the address value. After doing the
arithmetic, the expression becomes

*(int *) ((char *) ar + 20

The value 20 has already been scaled so it represents the number of
bytes to skip. If ar starts at address 1000, as in our picture, ar{l]{2 J refers
to the int that begins at address 1014 (hex value), which is 5.

If you specify fewer subscripts than there are dimensions, the result is a
pointer to the base type of the array. For example, given the
two-dimensional array declared above, you could make the reference

ar[l]

which is the same as

&ar [1] [0]

The result is a pointer to an into
The ANSI Standard places no limits on the number of dimensions an

array may have, although implementations may impose a limit. They are
required, however, to support at least six dimensions.

www.manaraa.com

7.11 Multidimensional Arrays 197

int ar(2) (3) = { { 0, 1, 2 },
{ 3, 4, 5 }

} i

Address Contents
Element (in hex) •• ---4 bytes----+.

ar [0] [0] 1000 0

ar[O] [1] 1004 1
ar [0] [2] 1008 2

ar [1] [0] loDe 3
ar [1] [1] 1010 4

ar [1] [2] 1014 5

1018

Figure 7-6: Storage of a multidimensional array.

7.11.1 Initializing a Multidimensional Array

When initializing a multidimensional array, you may enclose each row in
braces. If there are too few initializers, the extra elements in the row are
initialized to zero. Consider the following example:

int examp [5] [3] = { { 1 , 2 , 3 },
{ 4 },
{5,6,7}

} ;

This example declares an array with five rows and three columns, but
only the first three rows are initialized, and only the first element of the
second row is initialized. Pictorially, this declaration produces the follow­
mg array:

1 2 3
4 0 0
567
000
000

www.manaraa.com

198

If we do not include the inner brackets, as in

int examp [5] [3] = { 1 , 2 , 3 ,
4 ,
5 , 6 , 7 };

the result is

1 2 3
4 5 6
7 0 0
0 0 0
0 0 0

7: Arrays and Pointers

Obviously, the initializer in this example is very misleading. To en­
hance read-ability and clarity, you should always enclose each row of ini­
tializers in its own set of braces, as we did in the first example.

As with one-dimensional arrays, if you omit the size specification of a
multidimensional array, the compiler automatically determines the size
based on the number of initializers present. In the case of multidimen­
sional arrays, however, it is important to remember that you are really
declaring an array of arrays. That is, you are declaring an array in which
each element is itself an array. You may omit the number of elements in
the outermost array you are declaring because the compiler can figure this
out based on the number of initializers present. From a syntactic point of
view, this means that you may omit only the first size specification, but
you must specify the other sizes. For example,

int a_ar [] [3] [2] = H {l, l},
{a, a},
{l, I} L

} ;

HO, a},
{l, 2},
{O, I}}

results in a 2-by-3-by-2 array because there are twelve initializers. Each
element in the array a_ar is itself a 3-by-2 array. If we added another ini­
tializer, the compiler would allocate space for a 3-by-3-by-2 array, initial­
izing the extra elements to zero. The following declaration is illegal
because the compiler has no way of knowing what shape the array should
be:

/* ILLEGAL
*/

int b3r[] [] = { 1, 2, 3, 4, 5, 6 };

Should the compiler create a 2-by-3 array or a 3-by-2 array? There's
no way to tell. However, if you specify the size of each array other than
the first, the declaration becomes unambiguous.

www.manaraa.com

7.11 Multidimensional Arrays 199

Bug Alert Referencing Elements in a Multidimensional Array

One of the most common mistakes made by beginning C program­
mers---especially those familiar with another programming language-is
to use a comma to separate subscripts,

ar[1.2J = 0; /* Legal, but probably wrong */

instead of

ar[l] [2] = 0; /* Correct */

The comma notation is used in some other languages, such as
FORTRAN and Pascal. In C, however, this notation has a very different
meaning because the comma is a C operator in its own right. The first
statement above causes the compiler to evaluate the expression 1 and
discard the result; then evaluate the expression 2. The result of a comma
expression is the value of the rightmost operand, so the value 2 becomes
the subscript to ar. As a result, the array reference accesses element 2 of
ar.

If ar is a two-dimensional array of jnts, the type of ar[2} is a pointer
to an int, so this mistake will produce a type incompatibility error. This
can be misleading because the real mistake is using a comma instead of
brackets.

7.11.2 Passing Multidimensional Arrays as Arguments

To pass a multidimensional array as an argument, you pass the array
name as you would a single-dimension array. The value passed is a pointer
to the initial element of the array, but in this case the initial element is it­
self an array. On the receiving side, you must declare the argument appro­
priately, as shown in the example on the following example.

void f1 (void)
{

int ar [5] [6] [7];

f2(ar);

void f2(int received_arg[] [6] [7])
{

Again, you may omit the size of the array being passed, but you must
specify the size of each element in the array. Most compilers don't check

www.manaraa.com

200 7: Arrays and Pointers

bounds, so it doesn't really matter whether you specify the first size. For
example, the compiler would interpret the declaration of received_arg as if
it had been written:

int (*received_arg) [6] [7];

Another way to pass multidimensional arrays is to explicitly pass a
pointer to the first element, and pass the dimensions of the array as addi­
tional arguments. In the following example, what gets passed is actually a
pointer to a pointer to a pointer to an into

void f1 (void)
{

int ar [5] [6] [7];

f2 (ar, 5, 6, 7);

f2(int ***received_arg, int diml, int dim2, int dim3)
{

The advantage of this approach is that you need not know ahead of
time the shape of the multidimensional array. The disadvantage is that you
need to perform the indexing arithmetic manually to access an element.
For example, to access ar[x][y][zl in f20, you would need to write

*«int *)receive~arg + x*dim3*dim2 + y*dim2 + z)

Note that we need to cast received_arg to a pointer to an int because
we are performing our own scaling. Although this method requires consid­
erably more work on the programmer's part, it gives more flexibility to
f20 because it can accept three-dimensional arrays of any size and shape.
Moreover, it is possible to define a macro that simplifies the indexing ex­
pression. However, we defer a discussion of complex macros to Chapter
11.

7.11.3 Multidimensional Array Example

The following function is a practical example of how multidimensional
arrays are used. The purpose of the function is to determine the resulting
data type of a binary expression. The function takes two arguments,
which are integers representing the data types of the operands. It returns
an integer representing the result type. You may want to review Chapter 4
if you have forgotten how C determines the data types of expressions.

www.manaraa.com

7.11 Multidimensional Arrays 201

Program
7-20

#include <stdio.h>

typedef enum {T_SPECIAL = -2, T_ILLEGAL, T_INT, T_FLOAT,
T-POUBLE, T_POINTER, T~ST} TYPE;

TYPE type-needed(TYPE typel, TYPE type2)
{
static TYPE result_type [T_LASTJ [T_LASTJ =
/* int float double pointer */
/* int */ T_INT, T_FLOAT, T-POUBLE, T_POINTER,
/*f1oat */ TJLOAT, T_DOUBLE, T_DOUBLE, T_ILLEGAL,
/*double */T-POUBLE, T_DOUBLE, T-POUBLE, T_ILLEGAL,
/*pointer*/T_POINTER,T_ILLEGAL,T_ILLEGAL,T_SPECIAL
) ;
TYPE result = result_type [typel) [type2);

if (result == T_ILLEGAL)
printf("Illeqal pointer operation.\n");

return resul t;
)

All of the work is done by the array declaration. Each data type is as­
signed an integer value with the enum declaration; then we set up a matrix
of return types. Because of the way we have set up the two-dimensional
array, all we need to do is input the two types as subscripts and the refer­
enced element gives us the return type.

This function illustrates a number of important programming concepts
that are worth reviewing. First, note that we use an enum to define con­
stants for all of the return data types. This way, we can add new types
without worrying about what integer value is used to represent them. The
enum declaration ensures that each constant name will have a unique inte­
ger value and that LAST will represent the total number of types. Note
that we use LAST to specify the size of the array.

Also, we use comments and formatting techniques to make the array as
readable as possible. The computer itself doesn't care how it is formatted.
We could write the declaration as follows and the program would work
exactly the same, but it would be more difficult to understand and main­
tain.

char return_type [4] [4] = { 0, 2, 2, 3,

} ;

3, I, 2, -I,
2, 2, 2, -1,
3, -1, -1, -2

Finally, we should say a word about the SPECIAL case when both op­
erands are pointers. This expression is legal only if the pointers point to
the same type of object and if the operator is a minus sign, in which case
the result is an into To make this function perfect, therefore, we would
need to determine what type of pointers the operands are and what the
operator is.

www.manaraa.com

202 7: Arrays and Pointers

7.12 Arrays of Pointers

Program
7-21

In certain situations, it is useful to employ an array of pointers. Consider
the following declaration:

char *ar_of-p[5];

The variable ar _of-p[] is a 5-element array of pointers to characters,
not a pointer to a 5-element array of characters. This is because the array
element operator [] has higher precedence than the dereferencing operator
*. We discuss complex declarations such as this one in more detail in
Chapter 10.

So far the pointers have not been assigned any values, so they point to
random addresses in memory. But you can make assignments such as

char *ar_of-p[5];
char cO = 'a';
char cl = 'b';
ar_of-p[O] = &cO;
ar_of-p[l] = &cl;

These declarations and assignments cause the compiler to do two
things. First it must allocate two bytes somewhere in memory for the vari­
ables cO and c1. Then it assigns the addresses of these variables to
ar_of-p[O} and ar_of-p[l}. Figure 7-7 shows the storage relationship. The
addresses in the figure are arbitrary. The only thing that is guaranteed is
that ar _of-prO} and ar _of-p[l} will contain the addresses of cO and c1 and
that cO and c1 will be initialized to 'a' and 'b'.

Arrays of pointers are frequently used to access arrays of strings. The
function shown in Program 7-21, for example, takes an integer (from 1 to
12) representing a month as its input and prints the name of the month.

#include <stdio.h>
#include <stdlib.h>

void print-month(int m)
{

static char *month [13] = ("Badmonth", "January",
"February", "March", "April", "May", "June",
"July", "August", "September","October",
"November", "December"

} ;

if (m > 12)
{

printf("Illegal month value. \n");
exit (1);

printf ("%s\n", month (m]);

www.manaraa.com

7.12 Arrays of Pointers 203

The variable month is a 13-element array of pointers to chars. Because
of the initialization, each pointer actually points to the initial element of a
string. Figure 7-8 shows how this would be stored in memory. Note that
the month names are not necessarily contiguous, as shown by the gap be­
tween "February" and "March." The characters making up each name
must be contiguous, but the names themselves can be placed anywhere the
compiler sees fit.

Note that the array contains 13, not 12, elements, and that the initial
element is initialized to "Badmonth." The reason we have this extra
pointer with a useless value is so that we don't have to subtract anything
from the subscript. We could just as easily declare a 12-element array and
then change the printf() statement to

printf("%s\n", month [m-1])i

char *ar_of-p[SJ i

char cO 'a' ;
charcl='b';

ar_of-p[Ol &COi

a r_o f-p (2) &cl;

Element

ar_of-p [0]

ar_of-p [1]

ar_of-p [2]

ar_of-p [3]

ar_of-p [4]

Address

996

1000

1004

1008

100e

1010

1014

1FFF

cO 2000

c1 2001

2002

Figure 7-7: Array of pOinters

Contents
.... ---4 bytes--.........

2000 I--

2001

undefined

undefined

undefined

.-1 byte-.

'a'

'b'

www.manaraa.com

204 7: Arrays and Pointers

static char *month [13) 0: ("Badmonth", "January",
"February", "March", "April", "May", "June", "July",
"August", "September", "October", "November", "December"

Element Address Contents
+-4 bytes--.

month [0) 1000 2000
month [1) 1004 2009
month [2) 1008 2500
month (3) 100C 2700
month [4) 1020 2800
month [5) 1024 3000
month [6) 1028 3006
month [7) 102C 300A

month [8) 1030 300F

month [9) 1034 4000

month [10] 1038 400A

month [11] 103C 4011

month [12] 1040 401A

+1 byte-+
.-

r--- 2000 'B '
f-- 2001 'a'

2002 'd'

2003 'm'

2004 '0'

2005 'n'

2006 't'

2007 'h'

2008 '\0'

~ 2009 ')'

200A 'a'

200B 'n'

200C 'u'

200D 'a'

200E 'r'

200F 'y'

2010 '\0'
'-----

Figure 7-8: Storage of an array of pOinters to strings.

..

2011

2012

2013

2014

2015

2016

2017

2018

2019

2500

2501

2502

2503

2504

2505

-
'F'

'e'

'b'

'r'

'u'

'a'

'r'

'y'

'\0'
-

.-
'M'

'a'

'r'

'c'

'h'

'\0'
-

We prefer the first version, though, because it is more straightforward.
It is a fairly common practice to discard the initial element of an array
when the subscript values start naturally at 1. The only drawback to doing
this is that you must allocate an extra element that is never used. But do­
ing arithmetic on a subscript expression also has its price. Additional
arithmetic operations usually translate into extra machine code that makes
the program run more slowly. The extra instructions also take up more
memory, so you don't even save memory by using element zero. Like
many stylistic issues, the question of whether to declare an extra unused
element is a question of readability and efficiency. The correct answer de­
pends on the machine code produced by your compiler, the computer re­
sources at your disposal, and your own aesthetic inclinations.

www.manaraa.com

7.13 Pointers to Pointers 205

Program
7-22

The print_month() function would be more useful if, instead of print­
ing the month, it returned the month. The calling function could then do
with the month what it wished. To write this version, we need to declare a
function that returns a pointer to a char.

#include <stdio . h>
#include <stdlib . h>

char *month_text(int m)
{

static char *month [131 = {"Badmonth", "January",
"February" , "March", "April", "May", "June",
"July", "August", "September", "October".
"November", "December" };

if (m > 12)
(

}

printf("Illegal month va1ue . \n");
exi t (1);

return month [m1;

7.13 Pointers to Pointers

A pointer to a pointer is a construct used frequently in sophisticated pro­
grams. To declare a pointer to a pointer, precede the variable name with
two successive asterisks. For instance,

int **p;

declares p to be a pointer to a pointer to an into To dereference the pointer
and access the int, you also need to use two asterisks. For example,

j == **p;

assigns an integer to j.
Consider the following series of declarations:

int r == 5;
int *q == &r;
int **p == &q;

These declarations result in the storage pattern shown in Figure 7-9.
Both q and r are pointers, but q contains the address of an int, whereas p
contains the address of a pointer to an into

www.manaraa.com

206 7: Arrays and Pointers

We can assign values to r in three ways, as shown in the following
statements:

r = 10; /* Direct assignment */
q = 10; / Assignment with one indirection */
**p = 10i /* Assignment with two indirections */

Variable Address Contents
~ 4 bytes

r = 10; r 9ge 5 *q == 10;
**p = 10i

q 1004 99C

p lODe 1004

Figure 7-9: A pointer to a pointer

As an example of when you might use a pointer to a pointer, suppose
you want to write a spelling checker. The function takes a string as input
and compares it to an internal dictionary to see if it matches. If it does
match, a null pointer is returned; if it doesn't, a pointer to the spelling of
the closest match is returned. To make the program more useful (and illus­
trate pointers to pointers), though, let's write it so that it tests not only
English words, but French words as well.

One way to do this is to create a two-dimensional array of pointers.
The first subscript selects the English or French dictionary: the second sub­
script selects a particular word in one of the dictionaries. In addition to
accepting a string as an argument, the function takes another argument
that indicates the language of the input string. These parameters are put in
a header file that we call spell.h:

typedef enum{ FRENCH, ENGLISH, LANG_NUM
LANGUAGE;

extern char *check spe1l();
#define NULL (char *) 0

The function might look like the one shown in Program 7-23.
To save space and energy, we entered only the first few words of the

dictionary. Normally, the dictionary would be stored in a file so you
would not need to enter the words in an initialization. The function
strcmp(), which is part of the C library, compares two strings and returns
zero if they are equal and the difference between the first two differing
chars if they are not equal. If strcmp() returns zero, the input string must
be equal to one of the strings in the dictionary, so we return NULL. If the

www.manaraa.com

7.13 Pointers to Pointers 207

Program
7-23

input string doesn't match any of the strings in the dictionary, we assume
that it is misspelled and return a pointer to the closest spelling.

#include <string.h>
#include "spell.h"

#define ~WORDS 50
1* Dictionary in alphabetic order
* with NULL as last entry.
*1

static char *dict[LANG_NUM] [MAX_WORDS] = {
{ "aardvark", "abacus", "abash", "abbot",

"abhor", "able", "abort", "about", NULL
J.
{ "abeille", "absence", "absurde", "accepter",

"accident", "accord", "achat", "acheter",
NULL}

J ;

1* Return NULL pointer if str is found in
* dictionary. Otherwise, return a pointer to
* the closest match
*1

char *check_spell(char *str, LANGUAGE_T language)
{

int j, diff;
/* Iterate over the words in the dictionary *1
for (j=O; dict(language] [j] != NULL; ++j)
{

diff = strcmp{ str, dict[language] [j]);
1* Keep going if str is greater than dict entry *1
if (diff > 0)

continue;
if (diff == 0)

return NULL; 1* Match! */
return dict[language] [j]; /* No match, return closest

spelling */
J

/* Return last word if str comes after last
* dictionary entry
*/

return dict[language] [j . 1];

Note that we need to include a null pointer as the last element in the
initialization list. This is because the for loop iterates based on the value of
dict[language][j], which is a pointer to a string of chars. As long as
dict[language][j] is a valid pointer, the loop will continue to iterate. When
dict[language][j] is a null pointer (i.e., all words in the array are ex­
hausted), the loop will terminate. Without a null pointer to terminate the
loop, j would be incremented beyond the reserved storage for the array,
causing unpredictable behavior.

www.manaraa.com

208

Program
7-24

7: Arrays and Pointers

By using the language selector (language), we cut our work in half be­
cause we need to check the words in only one of the dimensions. We can
make the function even more efficient by introducing a pointer to a
pointer. One of the areas of inefficiency in the current version is the ele­
ment reference dict{languageJ[j]. To evaluate this expression, the compiler
has to do a fair amount of arithmetic, determining the offset values and
scaling them to the proper size. By eliminating one or both of the subscript
operators, we can make the function more efficient, as shown in Program
7-24.

#include <string.h>
#include "spell.h"

/* Dictionary in alphabetic order
* with NULL as last entry.
*/
static char *dict[LANG~] [~WORDSl = {

{"aardvark", "abacus", "abash", "abbot", "abhor",
"able", "abort", "about", NULL

},
{"abeille", "absence", "absurde", "accepter",
"accident" "accord", "achat", "acheter".
NULL}

} ;

/* Return NULL pointer if str is found in
* dictionary . Otherwise, return a pointer to
* the closest match . This time use pointers
* instead of array references
*/

char *check_spell(char *str,LANGUAG~_T language)
{

int diff;
char **curWord;

/* Iterate over dictionary entries */
for (curWord = dict[language]; *curWord; curWord++)
{

}

diff = strcmp(str, *curWord);
/* Keep going if str is greater than dict entry */
if (diff > 0)

continue;
if (diff == 0)

return NULL; /* Match! */
/* No match, return closest spelling */
return *curWord;

/* Return last word if str comes after last
* dictionary entry
*/
return curWord[-l] ;

www.manaraa.com

7.14 Exercises 209

The variable z is declared to be a pointer to a pointer to a char. It is
used to hold the addresses of the elements of dict[language}. Recall that
dict[] is an array of arrays, so z points to an element of one of two arrays,
either dict[ENGLISH} or dict[FRENCH}. The for statement then incre­
ments z directly instead of using a subscript. If the function does not find a
match, it returns *z, where z is the pointer to the current dictionary entry.
This is the same algorithm as the first version; all we have done is to take
the array address expression

&dict[language] [j]

and put it in z.
This second version of check_spell() may seem like a lot of trouble to

go through just to eliminate some subscripts, and in a sense it is. But it
illustrates one of C's strengths: there is almost always something you can
do to make a program more efficient. This type of improvement­
removing subscripts so the compiler can avoid excessive pointer arithme­
tic-is called strength reduction.

7.14 Exercises

1 Modify the avg_temp() function so that it prints the average tempera­
ture for each month. Use an array to store the number of days in each
month.

2. Write a function that initializes encoder[] with random values. Use the
randO and srandO functions described in Appendix A, and make sure
that all the elements have a unique value from 0 through 127.

3. Given the following declarations and assignments, what are the values
of these expressions?

int ad] ={10, 15, 4, 25, 3, -4};
int *p;
p = &ar[2] ;

a) *(p+l)

b) p[-l]

c) (ar-p)

d) ar [*p++]

e) * (ar+ar [2])

4. What's wrong with the following code?

int j, ar[5] = {l, 2, 3, 4, 5};
for (j=1; i < 5; ++j)

printf("%d\n", at[j]);

www.manaraa.com

210 7: Arrays and Pointers

5. Modify the bubble sort program so that instead of actually rearrang­
ing the elements of an array, it stores the correct order in another ar­
ray called ord[]. For example, if an originalS-element sequence is

13 25 11 2 14

then the values of ord[] after sorting should be

ord[O]= 2
ord[l]= 4
ord[2]= 1
ord[3]= a
ord[4]= 3

6. Write a function called merge_arrays() that takes two sorted arrays
and merges them into one sorted array. The function header should be

void merge_arrays ()
double *a, *b, *c;

where a and b are pointers to the two sorted arrays and c is a pointer
to the resulting merged array.

7. Modify merge_arrays() so that it eliminates duplicate entries.

8. Write a function called strcat() that appends one string to another.
The function should accept two arguments that are pointers to strl
and str2 and return a pointer to the first character in strl. Make sure
to over-write the null character in strl.

9. Rewrite the strlen() function using pointers and increment operators
to make it as efficient as possible.

10. Revise pacmatch() so that it is not case sensitive.

11. Are the declarations

char s[10];

and

char *s;

the same? If not, show how they are different by writing a program
where they cannot be interchanged.

12. The names of many high-tech companies all sound similar. They start
with roots such as "Com," "Data," "Inter," and end with suffixes
such as "graph," "dex," and "mation." Come up with some more be­
ginnings and endings, and write a program using rand() that randomly
puts the two together to form company names.

13. Modify the program in Section 7.10.4 so that it does not fail if the
input string is more than MAX_CHAR characters.

www.manaraa.com

7.14 Exercises 211

14. Modify the result_typeO function so that it works correctly for the
SPECIAL case. (Hint: you will need to add an additional argument to
the function.)

15. Write a function that sorts an array of character strings into alpha­
betical order. Note that this is really a two-dimensional array of chars.

16. Given the following declarations, evaluate these expressions.

int a[2] [3] = { {-3, 14, 5 },
{ 1, -10, 8 }

} ;
int *b [] = { a [0], a [1] };
int *p = b[l] ;

a) *b [1]

b) * (++p)

c) *(*(a+1)+1)

d) *(--p-2)

17. Which of the following expressions are equivalent to a[j][kJ?

a) * (a [j] + k)

b) ** (a [j+k])

c) (*(a+j)) [k]

d) (* (a+k)) [j]

e) * ((* (a+j)) + k)

f) **(a+j) + k

g) * (&a [0] [0] + j + k)

www.manaraa.com

8
Storage Classes

Memory: what wonders it performs in preserving and storing up things
gone by, or rather, things that are!

Plutarch, Morals: On the Cessation of Oracles

Most large programs are written by teams of programmers. After they
design the general outline of the program together, each programmer goes
off and writes an isolated piece of the program. When everyone is finished,
all the pieces are linked together to form the complete program. For this
process to work, there must be a mechanism to ensure that variables de­
clared by one programmer don't conflict with unrelated variables of the
same name declared by another programmer. On the other hand, there is
usually some data that needs to be shared between different source files, so
there must also be a mechanism that ensures that some variables declared
in different files do refer to the same memory locations and that the com­
puter interprets those locations in a consistent fashion. In C, you define
whether a variable is to be shared, and which portions of code can share
it, by designating its scope.

Scope is the technical term that denotes the region of the C source text
in which a name's declaration is active.

Another property of variables is duration, which describes the lifetime
of a variable's memory storage. Variables with fixed duration are guaran­
teed to retain their value even after their scope is exited. There is no such
guarantee for variables with automatic duration.

Collectively, the scope and duration of a variable is called its storage
class. This chapter describes storage classes in detail.

www.manaraa.com

8.1 Fixed vs. Automatic Duration

Consider the following program segment:

void func()
{

int j;
static int ar[]={1,2,3,4};

213

There are two variables, j and ar. Both have block scope because they
are declared within a block. They can be referenced, or "seen," only by
statements within the block. Variables with block scope are often called
local variables.

Variable j has automatic duration (the default for variables with block
scope), whereas ar has fixed duration because it is declared with the static
keyword. This means that j has memory allocated to it automatically and
may have a new address each time the block is entered. ar, on the other
hand, has memory allocated for it just once and keeps its original address
for the duration of the program.

The next section describes fixed and automatic variables in more detail.
We use the term "fixed" as opposed to the more common term "static" so
as not to confuse the concept with the keyword. The static keyword does
give a variable static duration but it also has scoping implications not usu­
ally associated with static variables.

8.1 Fixed vs. Automatic Duration

As the names imply, a fixed variable is one that is stationary, whereas an
automatic variable is one whose memory storage is automatically allo­
cated during program execution. This means that a fixed variable has
memory allocated for it at program start-up time, and the variable is asso­
ciated with a single memory location until the end of the program. An
automatic variable has memory allocated for it whenever its scope is en­
tered. The automatic variable refers to that memory address only as long
as code within the scope is being executed. Once the scope of the auto­
matic variable is exited, the compiler is free to assign that memory loca­
tion to the next automatic variable it sees. If the scope is reentered, a new
address is allocated for the variable. There is no way to ensure that an
automatic variable will retain its value from one scope entry to another.

Local variables (those whose scope is limited to a block) are automatic
by default, but you can make them fixed by using the keyword static in
the declaration. The auto keyword explicitly makes a variable automatic,
but it is rarely used because it is redundant.

www.manaraa.com

214

Program
8-1

8: Storage Classes

8.1.1 Initialization of Variables

The difference between fixed and automatic variables is especially impor­
tant for initialized variables. Fixed variables are initialized only once,
whereas automatic variables are initialized each time their block is reen­
tered. Consider the following program:

#include <stdio.h>

void increment(void)
{

int j=l;
static int k=l;

j++;
k++;
printf("j: %d\tk : %d\n", j, k);

int maine void
{

increment();
increment();
increment();

The incrementO function increments two variables, j and k, both ini­
tialized to 1. j has automatic duration by default, whereas k has fixed du­
ration because of the static keyword. The result of running the program is

j: 2 k: 2
j: 2 k: 3
j: 2 k: 4

When incrementO is called the second time, memory for j is reallocated
and j is reinitialized to 1. k, on the other hand, has still maintained its
memory address and is not reinitialized, so its value of 2 from the first
function call is still present. No matter how many times we call incre­
mentO, the value of j will always be 2, while k will increase by 1 with each
invocation.

We can summarize this observation with the following rule: an auto­
matic variable, when declared with an initializer, is reinitialized every time
its block is reentered; a fixed variable is initialized only once at program
start-up time.

Another important difference between automatic and fixed variables is
that automatic variables are not initialized by default whereas fixed vari­
ables get a default initial value of zero. If we rewrite the previous program
without initializing the variables, we get:

www.manaraa.com

8.1 Fixed VS. Automatic Duration 215

Program
8-2

#include <stdio .h>

void increment (void)
{

int j;
static int k;

j++;
k++;
printf(OJ: \d\tk: \d\n". j. k);

int main{ void
{

increment();
increment () ;
increment () ;

Executing the program on our machine results in

j: 3604481 k: 1
j: 3604481 k: 2
j: 3604481 k: 3

The values of j are random because the variable is never initialized.
With each invocation of incrementO, j receives a new memory allocation
and acquires whatever "garbage" value happens to be at the new location.
Because most compilers use a stack-frame implementation, the garbage
values may, as in this simple example, be the same each time. The C lan­
guage, however, does not guarantee this. If you use a more complicated
calling sequence, the results will be different. A helpful compiler will issue
a warning if you attempt to use an un initialized automatic variable before
you have made an assignment to it.

Another difference between initializing variables with fixed and auto­
matic duration is the kind of expression that may be used as an initializer.
For scalar variables with automatic duration, the initializer may be any
expression as long as all of the variables in the expression have been pre­
viously declared. For example, all of the following declarations are legal.

int j = O. k = 1;
int m = j + k;
float x = 3.141 * 2.3;

www.manaraa.com

216

Program
8-3

8: Storage Classes

The next series of declarations is illegal because j and k appear in an
expression before they are declared:

{
/* The following assignment is illegal because j
* and k have not yet been declared.
*/

int In = j + k;

/* j and k are declared now, but it's too late.
*/

int j = 0, k = 1;

The rules for initializing variables with fixed duration are stricter. The
initialization must be a constant expression, which means that it may not
contain variable names. For example,

int j = 10 * 4; /* OK */
int k = j; /* NOT OK */

8.1.2 Using Variables with Fixed Duration

A common use of fixed variables is to keep track of how many times a
function is invoked and to change the function's execution at regular in­
tervals. As an example, suppose you have a program that formats an input
text file and writes the formatted output to another file. One of the func­
tions in the program is print_header(), called at the beginning of each new
page. However, you want it to write a different header depending on
whether the page is even-numbered or odd-numbered. The following ver­
sion shows a possible solution that makes use of a fixed variable.

#define ODD 0
#define EVEN 1

print_header(char *chap_title
{

static char page_type = ODD ;

if (page_type == ODD)
{

printf (n\t\t\t\t\s\n\n", chap_title);
page_type = EVEN;

else
{

printf ("\5\n\n" , chap_title);
page_type = ODD;

www.manaraa.com

8.2 Scope 217

The variable page_type acts as a toggle switch, alternating between
ODD and EVEN. When the page number is odd, the function prints the
string pointed to by chap _title on the right side of the page; when the page
is even, the chap_title string appears on the left side. Note that the pro­
gram depends on page_type having fixed duration. If page_type had
automatic duration, it would get reinitialized to zero with each invocation
and the function would always print odd-numbered headers.

8.2 Scope

As stated earlier, the scope of a variable determines the region over which
you can access the variable by name. There are four types of scope: pro­
gram, file, function, and block.

• Program scope signifies that the variable is active among different
source files that make up the entire executable program. Variables
with program scope are often referred to as global variables.

• File scope signifies that the variable is active from its declaration
point to the end of the source file.

• Function scope signifies that the name is active from the beginning
to the end of the function.

• Block scope signifies that the variable is active from its declaration
point to the end of the block in which it is declared. A block is any
series of statements enclosed in braces. This includes compound
statements as well as function bodies.

In general, the scope of a variable is determined by the location of its
declaration. Variables declared within a block have block scope; variables
declared outside of a block have file scope if the static keyword is present,
or program scope if static is not present; only goto labels have function
scope.

The four scopes are arranged hierarchically, as shown in Figure 8-1. A
variable with program scope is also active within all files, functions, and
blocks that make up the program. Likewise, a variable with file scope is
also active within all functions and blocks in the file, but is not active in
other parts of the program. At the bottom of the hierarchy is block scope,
the most limiting case.

www.manaraa.com

218 8: Storage Classes

Program Scope

Function Scope

Block Scope

Figure 8-1: Hierarchy of adive regions (scopes).

The program fragment below shows variables with all four types of
scope:

int ij
static int jj
func(k)
int kj
{

int ffij

start:

/* Program scope */
/* File scope */
/* Program scope */

/* Block scope */

/* Block scope */
/* Function scope */

Note that function parameters have block scope. They are treated as if
they are the first declarations in the top-level block.

The C language allows you to give two variables the same name, pro­
vided they have different scopes. For example, the two functions below
both use a variable called j, but because they are declared in different
blocks, they do not conflict.

func1 ()
{

int j j

func2 ()
{

int jj

It is also possible for variables with the same name to have different
scopes that overlap. In this event, the variable with the smaller scope tem­
porarily "hides" the other variable, as illustrated in Program 8-4.

www.manaraa.com

8.2 Scope

Program
8-4

#include <stdio.h>

int j=10; /* Program scope */

int main(void)
{

int j; /* Block scope hides j at program scope */
for (j=O; j < 5; ++j)

printf("j: \d", j);

219

There are two j's, one with program scope and the other with block
scope. Although they have the same name, they are distinct variables. The
j with block scope temporarily hides the other j, so the result of running
the program is

j: 0
j: 1
j: 2
j: 3
j: 4

The j with program scope retains its value of 10.

8.2.1 Block Scope

A variable with block scope cannot be accessed outside its block. This
limitation is really an advantage because it protects the variable from in­
advertent side effects. By limiting the region over which variables can be
seen, you reduce the complexity of a program, making it more readable
and maintainable. Block scoping allows you to write sections of code
without worrying about whether your variable names conflict with names
used in other parts of the program. Also, readers of your program know
that the variable's use is limited to a small region.

It is also possible to declare a variable within a nested block. This tem­
porarily hides any variables of the same name declared in outer blocks.
This feature can be useful when you want to add some debugging code
into a function. By creating a new block and declaring variables within it,
you eliminate the possibility of naming conflicts. In addition, if you delete
the debugging code at a later date, you need not look at the top of the
function to find variable declarations that also need to be deleted.

www.manaraa.com

220 8: Storage Classes

In the following example, we add some debugging code that prints the
values of the first ten elements of an array.

foo()
{

int ar[20];
int j;

/* Begin debug code */
{

}

/* This j does not conflict with other j's.*/
int j;
for (j=O; j <= 10; ++j)

printf(n%d\t n, ar[j]);

/ * End debug code * /

Although variable hiding is useful in situations such as these, it can also
lead to errors that are difficult to detect. Consequently, you should use the
name-hiding feature judiciously.

8.2.2 Function Scope

The only names that have function scope are goto labels. Labels are active
from the beginning to the end of a function. This means that labels must
be unique within a function. Different functions, however, may use the
same label names without creating conflicts.

8.2.3 File and Program Scope

Giving a variable file scope makes the variable active throughout the rest
of the file. So if a file contains more than one function, all of the functions
following the declaration are able to use the variable. To give a variable
file scope, declare it outside a function with the static keyword.

Variables with program scope, called global variables, are visible to
routines in other files as well as their own file. To create a global variable,
declare it outside a function without the static keyword. In the following
program segment, j has program scope and k has file scope. Both variables
can be accessed by roiltines in the same file, but only j can be accessed by
routines in other files.

int j;
static int k;
main()
{

www.manaraa.com

8.3 Global Variables 221

Variables with file scope are particularly useful when you have a num­
ber of functions that operate on a shared data structure, but you don't
want to make the data available to other functions. A file that contains
this group of functions is often called a module. The linked-list functions
in Chapter 9 illustrate a good use of a variable with file scope.

8.3 Global Variables

In general, you should try to avoid global variables as much as possible.
They make a program difficult tQ maintain because they increase a pro­
gram's complexity. If you are attempting to understand someone else's
code, the static keyword signifying file scope is a boon because it ensures
that you need only look in the current source file to see all interactions of
the variable. If the static keyword is absent, you must assume the worst
and look at every source file that is part of the program to see if the vari­
able is used. This can be a frustrating and needless exercise.

Global variables also create the potential for conflicts between mod­
ules. Two programmers working on separate parts of a large project may
choose the same name for different global variables. The problem won't
surface until the entire program is linked together, at which time it may be
difficult to fix.

When you need to share data among different routines, it is usually
better to pass the data directly, or pass pointers to a shared memory area.
The one advantage of global variables is that they produce faster code. In
most cases, however, the increase in execution speed comes at the expense
of a significant decrease in maintainability. Such trade-offs of execution
speed for maintainability should be made only at the end of a project
when it is clear that performance is a problem.

Because global names must be recognized not only by the compiler but
also by the linker or binder, their naming rules are a little different. The
ANSI Standard guarantees only that the first six characters of a global
name will be recognized. Also, a compiler may suspend the case-sensitivity
rule for global names. This is an unfortunate restriction, but it is necessary
to support older systems. Note, however, that even though the compiler
may recognize only the first six characters, you are not restrained from
adding additional characters to make the name more meaningful. Just
make sure that the first six characters are unique.

www.manaraa.com

222

Bug Alert

8: Storage Classes

The Dual Meanings of static

One of the most confusing aspects about storage-class declarations in C
i that the static keyword seems to have twO effects depending on where
it appears. In a declaration within a block, static gives a variable fixed
duration instead of automatic duration. Outside a function, on the
other hand, static has nothing to do with duration. Rather, it controls
the scope of a variable, giving it file cope instead of program scope.

One way of reconciling these dual meanings is to think of static as
signifying both file scoping and fixed duration. Within a block, the
stricter block scoping rules override static's file scoping, so fixed dura­
tion is the only manifest result. Outside a function, duration i already
fixed, so file scoping is the only manifest result.

8.3.1 Definitions and Allusions

Up to now, we have assumed that every declaration of a variable causes
the compiler to allocate memory for the variable. However, memory allo­
cation is produced by only one type of declaration, called a definition.
Global variables permit a second type of declaration, which we call an
allusion. An allusion looks just like a definition, but instead of allocating
memory for a variable, it informs the compiler that a variable of the speci­
fied type exists but is defined elsewhere. In fact, we have already used allu­
sions in some of our examples to declare functions defined elsewhere. For
example,
II . I main()

{
extern int f(); /* Allusion to f() */
extern float g(); /* Allusion to g() */

Global variables follow the same rules as functions. Whenever you
want to use global variables defined in another file, you need to declare
them with allusions. For example, the following program contains allu­
sions to j and array_ofJ[].

void func()
{

extern int j;
extern float array_of_f[l;

/* An allusion */
/* An allusion */

The extern keyword tells the compiler that the variables are defined
elsewhere. The purpose of the allusion is to enable the compiler to perform
type checking. For any global variable, there may be any number of allu-

www.manaraa.com

8.3 Global Variables 223

sions but only one definition among the source files making up the pro­
gram.

The rules for creating definitions and allusions are one of the least
standardized features of the C language because they involve not just the
C compiler, but the linker and loader as well. This section describes the
ANSI rules. The shaded box on page 224 describes two other common
strategies.

To define a global variable according to the ANSI Standard, you need
to make a declaration with an initializer outside a function. The presence
or absence of the extern keyword has no effect. For instance, the following
code defines two global variables and one local variable, and alludes to
one global variable:

int j=O; 1* Global Definition *1
extern float x =
func()

1.0; 1* Global Definition *1

{
int k = 0;
extern int j;

1* Local Definition *1
1* Allusion to global variable *1

If you omit an initializer, the compiler produces either an allusion (if
extern is specified) or a tentative definition (if extern is not present). A
tentative definition is a declaration that can become either a definition or
an allusion depending on what the remainder of the source file contains. If
no real definition for the variable occurs (i.e., one with an initializer) in the
remainder of the source file, the tentative definition becomes a real defini­
tion, initialized to zero. Otherwise, if there is a real definition in the source
file, the tentative definition becomes an allusion. In the following example,
j is a tentative definition that becomes an allusion, and k is a tentative
definition that becomes a real definition.

int j; 1* Tentative Definition *1
int k; 1* Tentative Definition *1
f()
{

int j 1; 1* Real definition of j makes the
* tentative definition an allusion.

*
* There is no real definition of k,
* so the tentative definition becomes
* a real definition.
*1

Typically, you put all allusions in a header file, which can be included
in other source files. This ensures that all source files use consistent allu­
sions. Any change to a declaration in a header file is automatically propa­
gated to all source files that include that header file.

www.manaraa.com

224 8: Storage Classes

Non-ANSI Strategies for Declaring Global Variables

K&R Strategy

This strategy. sometimes called the "omitted-extern strategy," is the
simplest. Regardless of scope. if a declaration contains the extern
key-word. it is an allusion and not a definition. A global definition is
produced by declaring a variable outside a block, without the extern
keyword. For instance. the following segment contains one definition (j)
and two allusions (k and m).

int ji
extern int k;
func ()
{

extern int m;

The presence or absence of an initializer does not affect whether the
declaration is a definition or an allusion, but some compilers will not
allow you to include an initializer with an allusion. Those that allow an
initializer ignore it. Global variables defined without an initializer are
automatically initialized to zero.

UNIX Strategy

This technique, adopted by the C compiler for UNIX, uses the presence
or absence of an initializer to determine whether a declaration is a defi­
nition or an allusion. For declarations occurring outside a block, there
are three possibilities:

1. 1£ extern is present, the declaration is an allusion. It is illegal to
include both extern and an initializer.

2. 1£ extern is not present and the declaration includes an initial­
izer, the declaration is a definition .

3. If extern is not present and the variable is not initialized, a
"common" definition (as in FORTRAN) is emitted. If, in the en­
tire set of source files, there is one definition and one or more
common definitions of a variable, the common definitions be­
come allusions. 1£ there are no real definitions and only common
defmitions, the linker itself provides a definition for the variable
and resolves the common definitions as if they were allusions.

The UNIX method is similar to the ANSI method. The essential dif­
ference is that the ANSI method decides whether to make a tentative
definition a real definition or an allusion based on whether any defini­
tions exist in the current source file. The UNIX method delays this deci­
sion until link time so that it can see if the variable is defined in other
modules.

www.manaraa.com

8.4 The register Specifier 225

A Portable Strategy

If you want your programs to run on a wide range of computer , you
should use the following method, which is compatible with the ANSI
Standard, the K&R standard, and UNIX compilers.

• To define a global variable, omit the extern keyword and in­
clude an irutializer.

• To allude to a global variable, include extern but orrut an ini­
tializer.

For instance, to define j in header file foo.h and reference it in file
prog.c, you would write

File foo.h:

ink j=Oi

File prog.c:

extern int j i
fool)
{

8.4 The register Specifier

The register keyword enables you to help the compiler by giving it sugges­
tions about which variables should be kept in registers. To understand the
purpose of register variables, it is necessary to understand how registers
work in computers.

Every computer has a limited number of registers, which are stOrage
areas within the cpu. Each register is capable of holding a unit of data
(typically two or four bytes) and arithmetic calculations are processed us­
ing these registers. For example, on a hypothetical machine the simple
statement

j = k+mi

might cause the compiler to load two registers, call them rO and rl, with
the values stored in k and m. The computer then adds the two registers
and writes the result to the memory location occupied by j.

Operations involving registers are generally faster than memory opera­
tions. If you could store every variable in its own register, your program
would run somewhat faster. Unfortunately, computers usually have far
fewer registers than there are variables. As a result, the compiler must try

www.manaraa.com

226

Program
8-5

8: Storage Classes

to figure out the optimal strategy for assigning values to registers so as to
minimize memory accesses. This is one of the most difficult jobs compilers
perform, and it is often what separates a good compiler from a bad one.

The register keyword is designed to help the compiler decide which
variables to store in registers. However, it is only a hint, not a directive­
the compiler is free to ignore it. The degree of support for register varies
widely from one compiler to another. Some compilers store all variables
defined as register in a register until all of the computer's registers are
filled. Other compilers ignore register altogether. Still others contain some
type of intelligence that tries to determine whether it really is best to store
a register variable in a register. All of these variations are within the ANSI
Standard.

Because a variable declared with register might never be assigned a
memory address, it is illegal to take the address of a register variable
(registers are not addressable). This is true regardless of whether the vari­
able is actually assigned to a register. You should get a compile error if
you ever try to take the address of a variable declared with register.

A typical case where you might use register is when you use a counter
in a loop. In fact, we can rewrite our strlen() example from Chapter 7 to
make use of the register feature.

int strlen(register char *p)
{

register int len = 0;
while <*p++)

len++;
return len;

Note that this does not guarantee that p or len will be kept in registers
throughout the duration of the function's execution, but it makes it more
likely. In theory, there is no limit to the number of variables that you can
declare with register. In practice, however, compilers recognize only the
first n register declarations. After that, they interpret a register declaration
as a regular auto declaration. You should read the documentation for your
particular compiler to find out how you can best utilize the register key­
word.

8.5 The const Storage-Class Modifier

The const keyword, borrowed from the C++ language, specifies that the
variable may not be modified in any way following its initialization. For
instance, after declaring str{j,

const char str [10] = "Constant";

www.manaraa.com

8.5 The const Storage-Class Modifier

you cannot change any of the values in the array str{}. The statement

str [0] = 'a';

227

would be illegal and should be reported as an error by the compiler. The
rule, however, does not necessarily apply to non-const pointers that point
to const objects. If you make the additional declaration

char *p = &str[5];

then the statement

*p = 'm';

mayor may not be legal, depending on the compiler. Ideally, this should
be illegal, but in many cases it is impossible for the compiler to diagnose
this error.

You can use const in place of a #define directive. For instance,

const long double pi = 3.1415926535897932385;

One unusual aspect concerning the const keyword is that it may appear
between the pointer symbol (*) and the variable name, as in

int *const const-ptr;

This means that the pointer const-Ptr is a constant-it must point to
the same object as long as it exists. Contrast this to the similar-looking
declaration

which says that the object to which ptr _to_canst points cannot change.
ptr _to_canst itself can be assigned a different address, although it must be
an address of an object declared with const. That is, ptr _to_const can
point only to objects of type canst into

The main purpose of const is to ensure that read-only data is not modi­
fied. This is particularly useful when passing pointer arguments to func­
tions. By declaring the argument with const, you can ensure that the called
function will not change the object pointed at by the pointer. In the fol­
lowing example, the declaration of q as a pointer to a const object guaran­
tees that the strcpy() function will not change the object that q points to.

char *strcpy (char *p, const char *q)
{

The const feature is also useful to some computer manufacturers in de­
termining which parts of data can be "burned" into ROMs (Read-Only
Memories). ROMs are essential for systems that do not have some other
storage medium, such as disk storage, available. In addition, ROMs are
considerably less expensive than read-and-write memory boards.

www.manaraa.com

228 8: Storage Classes

8.6 The volatile Storage-Class Modifier

Program
8-6

Program
8-7

The volatile keyword, which is not supported by older compilers, informs
the compiler that the variable can be modified in ways unknown to the C
compiler. This usually applies to variables that are mapped to a particular
memory address (i.e., device registers). In these cases, it is crucial that an
expression or a series of statements be executed exactly as they are written
rather than being reordered for optimization purposes. For instance, sup­
pose KEYBOARD in the following function is a device register that ac­
cepts characters from the keyboard.

void get_two~b~chars (void)
{

extern char KEYBOARD;
char cO, cl;

cO := KEYBOARD;
cl = KEYBOARD;

The purpose of the function is to read a character from the keyboard
and store it in cO, then read the next character and store it in c1. However,
the C compiler, unaware that the value of KEYBOARD can be changed
outside the block, is likely to store the value of KEYBOARD in a register
and then assign that register to cO and c1. In other words, it will compile
the program as if it had been written as:

void get_two_kbd_chars(void)
{

extern char KEYBOARD;
char cO, cl;
register char temp;

temp := KEYBOARD;
cO temp;
cl = temp;

Obviously, this is not what was intended because the same character
would be assigned to both cO and c1. To ensure that KEYBOARD is read
twice, you must declare it as volatile:

extern volatile char KEYBOARD;

Another situation in which normal optimization techniques can change
the meaning of a program is in loop-invariant expressions. For instance,
using KEYBOARD again, suppose we have the function:

www.manaraa.com

8.7 Summary of Storage Classes 229

Program
8-8

Program
8-9

void rea~ten-chars(void)
{

extern char KEYBOARD;
extern void copy(int);
int Xi
char c ;

for (x=O; x < 10; x++)
{

c = KEYBOARD:
copy (c):

The purpose of the function is to read 10 successive characters from
the keyboard and pass each to a function called copy(). To the compiler,
however, it looks like an inefficient program because c will be assigned the
same value 10 times. To optimize the program, the compiler may translate
it as if it had been written like the function in Program 8-9.

As a result, the same character is sent to copy() each time. Once again,
declaring KEYBOARD with volatile ensures that the expression is not
extracted from the loop.

The volatile modifier is often used in a cast expression. The following
statement assigns the contents of hexadecimal address 20 to the variable c.
The volatile keyword in the cast ensures that the assignment will not be
optimized in any way.

c = (* (volatile char *) Ox20):

void read_ten_chars(void
{

extern char KEYBOARD:
int Xi
char c;

c = KEYBOARD: /* The invariant expression is
removed from the loop. */

for (X=Oi x < 10i x++)
copy(c);

8.7 Summary of Storage Classes

So far we have described the semantics of storage classes-how they affect
variables. But we have glossed over some of the details about syntax­
how storage classes are specified. In this section, we summarize the ANSI
rules for the syntax and semantics of the storage-class keywords.

www.manaraa.com

230 8: Storage Classes

There are four storage-class specifiers (auto, static, extern, and register)
and two storage-class modifiers (const and volatile). Any of the storage
class keywords may appear before or after the type name in a declaration,
but by convention they come before the type name. The semantics of each
keyword depends to some extent on the location of the declaration. Omit­
ting a storage class specifier also has a meaning, as described below. Table
8-1 summarizes the scope and duration semantics of each storage class
specifier.

auto

static

extern

The auto keyword, which makes a variable automatic, is
legal only for variables with block scope. Because this is the
default anyway, auto is somewhat superfluous and is rarely
used.

The static keyword may be applied to declarations both
within and outside a function (except for function argu­
ments), but the meaning differs in the two cases. In declara­
tions within a function, static causes the variable to have
fixed duration instead of the default automatic duration.
For variables declared outside a function, the static key­
word gives the variable file scope instead of program scope.

The extern specifier may be used for declarations both
within and outside a function (except for function argu­
ments). For variables declared within a function, it signifies
a global allusion. For declarations outside a function, ex­
tern denotes a global definition. In this case, the meaning is
the same whether you specify extern or not.

Table 8-1: Semantics of Storage-Class Specifiers.

Storage Class
Specifier / Place
Where Declared

Outside a
Fundion

Within a Fundion Fundion
Arguments

auto or register Not Allowed scope: block
duration: automatic

scope: block
duration: automatic

static

extern

No storage­
class specifier
present

register

scope: file
duration: fixed

scope: program
duration: fixed

scope: program
duration: fixed

scope: block
duration: fixed

scope: block
duration: fixed

scope: block
duration: dynamic

Not Allowed

Not Allowed

scope: block
duration: automatic

The register keyword may be used only for variables de­
clared within a function. It makes the variable automatic
but also passes a hint to the compiler to store the variable

www.manaraa.com

8.8 Dynamic Memory Allocation 231

in a register whenever possible. You should use the register
keyword for automatic variables that are accessed fre­
quently. Compilers support this feature at various levels.
Some don't support it at all, whereas others support as
many as 20 concurrent register assignments.

omitted For variables with block scope, omitting a storage class
specifier is the same as specifying auto. For variables de­
clared outside of a function, omitting the storage class
specifier is the same as specifying extern. It causes the com­
piler to produce a global definition.

const The const specifier guarantees that you cannot change the
value of the variable.

volatile Declaring a variable with the volatile specifier causes the
compiler to turn off certain optimizations. This is especially
useful for device registers and other data segments that can
change without the compiler's knowledge.

The syntax for storage-class keywords is rather loose, allowing some
declarations that have little or no meaning. For example, it is legal to de­
clare a variable with both register and volatile, although it is unclear how
a compiler would interpret it. The only real syntactic restriction is that a
declaration must include at most one storage-class specifier. But either or
both modifiers may be used. The following, for example, is perfectly legal
and even has a reasonable meaning:

extern const volatile char real __ TlME __ clock;

It is an allusion to a variable of type char that is both const and vola­
tile.

8.8 Dynamic Memory Allocation

Fixed variables provide a means for reserving memory for the duration of
a program, whereas automatic variables cause the system to allocate
memory when each block is entered. Both of these approaches assume that
you know how much memory you need before you write the source code.
Frequently, however, the amount of memory required by a program
hinges on the input. For example, consider the bubble_sortO function in
the previous chapter. Suppose you want to write another function that
reads a list of numbers entered from the keyboard and then calls bub­
ble_sortO to put them in order. To make the function as useful as possible,
it should work no matter how many numbers you enter. But if the amount

www.manaraa.com

232

Program
8-10

8: Storage Classes

of input varies from one execution to another, how large an array should
you declare to store the input?

There are two solutions to this problem. The simplest is to pick a
maximum value and declare an array of that size. For instance, if you de­
cide to set a limit of 100 input values, you would declare a 100-element
array, as shown in Program 8-10.

There are two basic problems with this solution. First, you need to set
an arbitrary maximum. This isn't good because there may be a future time
when you want to exceed this limit. The second, related problem is that
the higher the maximum, the more memory is wasted. If you declare an
array with 100 4-byte iots but use only ten of them, you are wasting 360
(90*4) bytes. 360 wasted bytes isn't too bad, but suppose you set the
maximum at 1000. Then the number of wasted bytes would be 3,960, or
almost 4K. On a small computer, this is a significant amount of memory.

#include <stdio.h>
#include <stdlib.h>

#define MAX~RRAY 100

int main(void)
{

extern void bubble_sort()i
int list [MAX_ARRAY], j, sort-num;
printf ("How many values are you going to enter?");
scanf ("%d", &sort_num) i
if (sort-num > MAXJU\RAY)
(

printf ("Too many values %d is the maximum\n"
, MAX~RRAY) i

sort_num = ~RAY i

for (j=Oi j < sort_num; j++)
scanf ("%d", &list [j]) i

bubble_sort (list, sort_num);
exit (0);

The other solution takes advantage of runtime library functions that
enable you to allocate memory on the fly. There are four dynamic memory
allocation functions:

malloc() Allocates a specified number of bytes in memory. Returns a
pointer to the beginning of the allocated block.

calloc()

realloc()

free 0

Similar to malloc(), but initializes the allocated bytes to
zero. This function also allows you to allocate memory for
more than one object at a time.

Changes the size of a previously allocated block.

Frees up memory that was previously allocated with mal­
locO, calloc(), or reallocO.

www.manaraa.com

8.8 Dynamic Memory Allocation 233

Program
8-11

Each of these functions is described in detail in Appendix A. The func­
tion in Program 8-11 shows how you might use mallocO to get space for
data to sort.

The argument to mallacO is the size in bytes of the block of memory to
be allocated-in this case, the number of elements times the size of each
element. mallacO returns a pointer to the beginning of the allocated block,
as shown in Figure 8-2.

Dynamic Memory

,...... ~rf---------l!llil
list I ,

'--_____ ---1

Figure 8-2: Dynamic memory allocation.

ANSI C makes use of the void data type by returning a pointer to a
void. The void pointer is a generic pointer that is automatically cast to the
correct type when it is assigned a pointer value. Therefore, you do not
need to cast the function result. You must, however, include the header file
stdlib.h because it contains function prototypes.

#include <stdio .h>
#include <stdlib.h>

int main(void)
(

extern void bubble_sort();
int *list. sort_num, j;

printf(IIHow many nwnbers are you going to enter?");
scanf ("Ilsd". &sort_num);
list = (int *) malloc (sort-num * sizeof(int));
fort j=O; j < sort-num; j++)

scanf("Ilsd" , list + j);
bubble_sort (list. sort-num);
exit (0) i

www.manaraa.com

234 8: Storage Classes

Using ealloeO, the storage allocation statement would be:

list = ealloe(sort_num, sizeof (int));

The ealloeO function takes two arguments: the first is the number of
objects to reserve memory for, and the second is the size of each object.

Note that the functions using malloeO and calloc() depend on the fact
that all the elements are stored contiguously. If they weren't, the expres­
sion list + j would not necessarily retrieve the next value. The only reason
they are stored together is that they are allocated in a single block. If you
were to allocate each element individually, the operating system would be
free to spread the elements around. For instance, the statements

pI = malloe(sizeof (int));
p2 = malloe(sizeof (int));
p3 = malloe(sizeof (int));

allocates memory for three ints, but there is no guarantee about the rela­
tive locations of the three objects. pl might point to address 1000, and p2
might point to address 5000. Therefore, you cannot allocate memory for
each individual element and expect them to be contiguous. You must
know ahead of time the total size of the block that is required. There is a
technique to get around this limitation called a linked list. We describe
linked lists in the next chapter.

8.9 Exercises

1. For all of the following declarations, state which are definitions and
which are allusions:

int j;
float x = 1.0;
extern char *p = "string";
static int a;
char *fl (argl, arg2)
register int argl;

double arg2;
{

extern float x;
extern char *p2;
static long int bi~int;
register long rl;
unsigned ul;

int j = 0;

2. Write declarations for the following. Include braces to make it clear
whether the declaration appears inside or outside a block.

www.manaraa.com

8.9 Exercises

a) An automatic local into

b) A fixed local float.

c) A global pointer to a char, initialized with a null pointer.

d) An int with file scope.

e) A register int argument.

f) A constant double.

g) A constant pointer to a double.

h) A pointer to a constant char.

i) A volatile into

235

3. What are the initialized values of the variables in the following pro­
gram? Also identify all of the following declarations as definitions,
tentative definitions, or allusions.

static int s = 2;
int x = 3;
extern int xl;

main()
{

static float j = x + 5;
float jl = x + xl;
static float x2;
float x3;
register int s2;

extern int x4 = 3

4. Write a function that prints out n asterisks, where n represents the
number of times it has been called. If it is called four times, for in­
stance, the output will be

**

www.manaraa.com

9
Structures

and Unions
Art and science cannot exist but in minutely organized particulars.

William Blake, To the Public

Arrays are good for dealing with groups of identically typed variables, but
they are unsatisfactory for managing groups of differently typed data. To
service groups of mixed data, you need to use an aggregate type called a
structure. (Other languages, such as Pascal, call this data type a record.)
Another aggregate type, called a union (similar to a variant record in Pas­
cal), enables you to interpret the same memory locations in different ways.

9.1 Structures

We are all familiar with the ubiquitous forms that ask for our name, date
of birth, and social security number. The purpose of this information is
usually obscure, but we can assume that, like most other information, it
eventually finds its way into a computer memory bank. Years later, it
comes back to haunt us when we fail to pay a parking ticket or when we
apply for a loan. It is reasonable to ask how this not-so-innocuous infor­
mation is stored in the computer.

The first piece of information (your name) is clearly a character array.
The second and third pieces of information can be treated as either charac-

www.manaraa.com

9.1 Structures 237

ter arrays or integers, or even as arrays of integers. For this discussion, we
treat the date as three integers, one each for day, month, and year. We
treat the social security number as an ll-element character array (ten
characters for digits and one for the terminating null character). You can­
not put all of the information in a single array because arrays contain only
one type of data. You can, however, store this information in separate
variables. For instance, you might write

char name [19] , ssnum[ll];
short day, month, year;

You could then enter data with the following assignments:

strcpy(name, "John Doe");
strcpy(ssnum, "0l32222456");
day = 26;
month = 11;
year = 1957;

Storing the data in this fashion gets the information into the computer
but creates a strange organization. The information about one person is
scattered about memory instead of being grouped together. The arrange­
ment becomes even worse if you adjust the data structure to accommodate
information about more than one person. In this case, you would need to
make each piece of information an array. To store data about 1000 peo­
ple, you would write

char name [1000] [19], ssnum[1000] [11];
short month [1000] , day[1000], year[1000];

A more natural organization would be to create a single variable that
contains all three pieces of data. C enables you to do this with a data type
called a structure. A structure is like an array except that each element can
have a different data type. Moreover, the elements in a structure, called
fields or members, have names instead of subscript values. We like to
think of structures as arrays with personality. To declare a structure to
hold one's vital statistics, you would write

struct vitals tat
{

} ;

char vs_name[19] , vs_ssnum[11];
short vs_month, vs_day, vs-year;

struct vita1stat vS;

There are two declarations: the first declares a structure template called
vitalstat; the second declares an actual variable called vs with the vitalstat
form. It is a good idea to include a unique prefix for each member name so
that the members are not confused with members of other structures that
may have similar names. The storage for vs on our machine is shown in
Figure 9-1. Note that the fields are stored consecutively in the order they
are declared. Contiguity, however, is not required. As we describe later in
this chapter, it is possible for structures to contain gaps between members.

www.manaraa.com

238

atruct vitalstat
{

char vs-pame[19] , vs_ssnum(ll];
short va~onth, va_day, vs-year;

} ;

struct vita1stat va;

1000

1004

1008

100C

1010

1014

1018

101C

1020 vB_day

Figure 9-1: Memory storage of the vs structure.

9: Structures and Unions

The namevitalstat is called a tag name. It represents a new,
user-defined data type, but no storage is allocated for it. You can use the
tag name over and over again within a program to create additional vari­
ables with the same fields. For instance, you could write

struct vitalstat vsa[lOOO] , *pvs;

The variable vsa[] is an array with 1000 members; each member is it­
self a structure containing the fields vs_name[], vs_ssnum[], vs_day,
vs_month, and vs_year. The variable pvs is a pointer to a structure with
these fields. You could make the assignment

pvs = &vsa[lO];

which makes pvs point to element 10 of the array.
The syntax of a structure declaration can be fairly complex. The form

of declaration we have used-declaring a tag name and then using the tag

www.manaraa.com

9.1 Structures 239

name to declare actual variables-is one of the most common. It is also
possible to declare a structure without using a tag name, as in

struct
{

char vs_name[19] , vSjlsnum[ll];
short vs_month, vs_day, vs-year;

} vs;

This is useful if you want to declare a single structure type to be used in
one place only. You can also declare a tag name and variables together:

struct vitals tat
{

char vs_name[19] , vs_ssnum[ll];
short vs_month, vs_day, vs-year;

} vs, *pvs, vsa[lO];

A final method, which is the one we use most often, is to define a
typedef name. For instance,

typedef struct
{

char vs_name[19] , vs_ssnum[ll];
short vs_month, vs_day, vs-year;

} VITALSTAT;

In this case, the type VITALSTAT represents the entire structure decla­
ration, including the struct keyword. Note that we use all capital letters
for the typedef name to keep it distinct from regular variable names and
tag names. To declare a variable with this structure, you would write

VITALSTAT vS;

A tag name or typedef enables you to define the data structure just
once even though you may use it over and over again. Typically, structure
definitions are placed in a header file where they can be accessed by multi­
ple source files.

9.1.1 Initializing Structures

You can initialize a structure in the same manner as you initialize arrays.
Follow the structure variable name with an equal sign, followed by a list
of initializers enclosed in braces. Each initializer should agree in type with
the corresponding field in the structure. For instance,

VITALSTAT vs = { "George Smith", "002340671",
3, 5, 1946,

} ;

The ANSI Standard allows you to initialize both automatic and fixed
structures, but the K&R standard and most older C compilers allow you
to initialize only fixed structures. Also, you may not include an initializer
in a declaration that contains only a tag name or is a typedef since these

www.manaraa.com

240 9: Structures and Unions

types of declarations create templates but do not allocate storage. The
following, for instance, is invalid:

typedef struct
{

int a;
float b;

s = { 1, 1. 0 }; /* Initializer is not allowed
* in a typedef
*/

9.1.2 Referencing Structure Members

Having declared a structure, you need a way to access the fields. There are
two methods, depending on whether you have the structure itself or a
pointer to the structure. Each method uses a special operator. If you have
the structure itself, you can enter the structure name and field name sepa­
rated by the dot (.) operator. For instance, to assign the date March 15,
1987, to vs, you would write

vs. vs_month = 3;
vs. vs_day = 15;
vs.vs-year = 1987;

The referenced field expression is just like any other variable, so you
can use vs.vs_month anywhere you would normally use a short variable.
The following statement, for instance, is perfectly legal:

if (vs.vs_month > 12 II VB. vB_day > 31)
printf("Illegal Date.\n");

The other way to reference a structure member is indirectly through a
pointer to the structure. Declaring pointers to structures is the same as
declaring pointers to other kinds of objects:

VITALSTAT *pvs; /* Declare a pointer to a
structure of type VITALSTAT */

To reference a member through a pointer, use the right-arrow operator
(-», which is formed by entering a dash followed by a right angle bracket.
For example,

if (pvs->vs_month > 12 II pvs->vs_day > 31)
printf ("Illegal Date. \n");

The right-arrow operator is actually a shorthand for dereferencing the
pointer and using the dot operator. That is,

pvs ->vs_day

is the same as

(*pvs) . vs_day

www.manaraa.com

9.1 Structures 241

Program
9-1

9.1.3 Arrays of Structures

Because a structure is a data object, it is possible to create arrays of struc­
tures. An array of structures is declared by preceding the array name with
the structure typedef name:

VITALSTAT vsa[lO] ;

The following function counts the number of people in a particular age
group. We assume that the array of structures has already been filled with
data and a pointer to the beginning of this array is passed as an argument.
The second argument is the number of elements in the array. We also as­
sume that the include file called v _stat.h contains the declaration of
VITALSTAT.

#include "v_stat.h" /* Contains declaration of VITALSTAT */

int agecount (VITALSTAT vsa[), int size, int low_age
, int hig~age, int current-year)

int i, age, count = 0;

for (i = 0; i < size; ++vsa, ++i)
{

age = current-year - vsa->vs-year;
if (age >= low_age && age <= hig~age)

count++;

return count;

As we noted in Chapter 7, indexing into an array is not as efficient as
using a pointer to an array because indexing involves an additional multi­
plication. The computer must multiply the index by the size of the array
element and add the resulting offset to the base of the array. You can
avoid some of this arithmetic by assigning a pointer to the base of the ar­
ray. Then you need only increment the pointer for each iteration. This is
an optimization called strength reduction, which is performed automati­
cally by some compilers.

Rewriting agecountO using pointers and the -> operator, we get the
function shown in Program 9-2.The only difference between this version
and the earlier version is that we increment vsa directly instead of incre­
menting an index variable. The declaration of vsa remains the same due to
C's array-passing conventions. Recall from Chapter 7 that C converts an
argument declared as an array into a pointer to the array type. In both
versions, therefore, vsa is a pointer to a VIT ALST A T structure. You could
also declare it as

VITALSTAT *vsa;

www.manaraa.com

242

Program
9-2

Program
9-3

9: Structures and Unions

#include "v_stat.h Ol 1* Contains declaration of VITALSTAT *1

int agecount (VITALSTAT vsa[], int size, int low_age
, int high-age, int current-year)

int i, age, count = 0;

for (i = 0; i < size. ++vsa, ++i)
{

age = current-year - vsa->vs-year;
if (age >= low_age && age <= high-age)

count++;

return count;

Note that pointer scaling enables us to use the increment operator to
move the pointer down the array. In this case, vsa points to a 36-byte
structure, so it is incremented 36 bytes on each iteration.

One stylistic problem with the pointer version of agecount() is that it
changes the value of the formal parameter vsa. This is perfectly legal, but
it is a dangerous practice in general because it makes the function less
maintainable. The problem is that you or another programmer may ex­
pand the function later on and use vsa again, expecting that it will still
point to the beginning of the array. But instead, it will point to the last
element of the array.

Maintaining a program is easier if you can assume that formal parame­
ters maintain their initial value throughout the function. In this particular
case, assigning to formal parameters isn't too big a problem because the
function is small and relatively simple. For larger, more complex func­
tions, however, you should avoid assigning into formal parameters. The
simplest solution is to create temporary variables initialized with the val­
ues of the formal parameters, as shown in this version of agecount():

#include "v_stat.hl! 1* Contains declaration of VITALSTAT *1

int agecount (VITALSTAT vsa[] , int size, int low_age
• int high-age. int current-year)

int age, count = 0;
VITALSTAT *P. *p_last = &vsa[size];

for (p = vsa; p < p_last; ++p)
{

age = current-year - p->vs-year;
if (age >= low_age && age <= hiqh-age)

count++;

return count;

www.manaraa.com

9.1 Structures 243

9.1.4 Nested Structures

When one of the fields of a structure is itself a structure, it is called a
nested structure. Nested structures are common in C programming be­
cause they enable you to create data hierarchies. For instance, we can re­
write the VIT ALST A T structure as:

typedef struct
{

char vs_name[19] , vs_ssnum[ll];
struct
{

short vs_day;
short vs_month;
short vs-year;

} vs_birth_date;
VITALSTAT;

We replace the three fields representing the date of birth with a struc­
ture containing these fields. The storage allocation is the same, but instead
of accessing the year as

vS.vs-year

we access it as

The second reference is more readable since vs_birth_date.vs_year is
more meaningful than vs_year.

Another way to declare nested structures is with typedefs. We can re­
write the previous declaration as

typedef struct
{

char day;
char month;
short year;

DATE;

typedef struct
{

char vs_name[19] , vs_ssnum[ll];
DATE vs_birth_date;

VITALSTAT;

VITALSTAT vsa[lOOO];

Note that we also changed day and month to be chars because all pos­
sible values for these members can be represented in eight bits. Having
defined a new structure type called DATE, we can put it in a header file
(date.h) and use this structure template in other ways. For this reason, we
did not include the vs_prefix in the field names. For instance, in another
program we might write:

www.manaraa.com

244

#include "date.h"
typedef s truct
{

DATE d;
char event [20];

} CALENDAR;

CALENDAR holiday = {

} ;

{ 12, 25, 1986 },
{ "Christmas" }

9: Structures and Unions

Note that when you initialize a nested structure, you should enclose it
in braces, just as you would if you were initializing a multidimensional
array. Theoretically, there is no limit to the number of levels you may nest
structures. Eventually, though, the field references become rather difficult
to read because they contain all of the intermediary structures.

9.1.5 struct and union Name Spaces

The ANSI Standard requires C compilers to create a separate naming
space within each structure and union, so that two or more structures or
unions can have components with the same name. For example,

struct s1 {
int a,b;

} ;

struct s2 {
float a,b;

} ;

This feature is an extension to the K&R standard, so it may not be
available on older compilers. Moreover, for stylistic reasons, you should
avoid giving different variables the same name unless there is a very good
reason for doing so.

Tag names, member names, and variable names are all distinct, so a
tag, a member, and a variable may have the same name without a conflict
arising. The following, for example, is legal:

struct x { int x; } x;

Again, you should be careful not to abuse this capability.

9.1.6 Self-Referencing Strudures

A structure or union may not contain instances of itself, but it may
contain pointers to instances of itself. For example,

struct s
{ int a,b;

float c;
struct s *pointer_to_s; /* This is legal */

} ;

www.manaraa.com

9.1 Structures 245

As this example illustrates, you are permitted to declare pointers to
structures that have not yet been declared. This feature enables you to cre­
ate self-referential structures and also to create mutually referential struc­
tures and unions, as shown in the following example.

struct sl
{

int a;
struct s2 *b;

} ;

struct s2
{

int a;
struct sl *b;

} ;

Each structure contains an integer as the first component and a pointer
to the other structure as the second component. The compiler allows you
to declare a pointer to struct s2 before s2 is ever declared. This situation,
known as forward referencing, is one of the few instances in the C lan­
guage in which you may use an identifier before it has been declared.

Note that forward references are not permitted within typedefs. The
following produces a syntax error:

typedef struct
{

int a;
FOO *p; 1* Error because FOO is not

* yet declared.
*1

} FOO;

9.1.7 Alignment of Structure Members

Some computers require that any data object larger than a char must be
assigned an address that is a multiple of a power of two. For instance, the
Motorola 68000 CPU requires that all objects larger than a char be stored
at even addresses. Normally, these alignment restrictions are invisible to
the programmer. However, they can create holes, or gaps, in structures.
Consider how a compiler would allocate memory for the following struc­
ture:

struct ALIGN~XAMP
{

char mem1;
short mem2;
char mem3;

sl;

If the computer has no alignment restrictions, sl would be stored as
shown in Figure 9-2.

www.manaraa.com

246

5truct ALIGNJXAMP
{

char mem1;
short mem2;
char mem3;

51;

9: Structures and Unions

1001 1003

1000

1004

r-_mem_1 __ ~I ______ mem_2 ____ ~I __ m_em_3 __ 1
Figure 9-2: Structure allocation without alignment restrictions.

If the computer requires objects larger than a char to be stored at even
addresses, 51 would be stored as shown in Figure 9-3. This storage ar­
rangement results in a l-byte hole between mem1 and mem2 and follow­
ing mem3. The trailing gap is necessary so that in an array of
ALIGN_EXAMP structures, each element would begin at an even address.

struct ALIGN_EXAMP
{

char mem1;
short mem2;
char mem3;

61;

1000 meml

1004 mem3

1001 1002

Figure 9-3: Structure allocation with alignment restrictions.

mem2

Note that you can avoid these holes by rearranging the member decla­
rations:

struct ALIGN_EXAMP
{

char mem1, mem3;
short mem2;

sl;

Because structures can be allocated differently on different machines,
you should be careful about accessing them in a portable manner. One
way to avoid portability problems is to make sure that all members are
naturally aligned. Natural alignment means that an object's address is

www.manaraa.com

9.1 Structures 247

evenly divisible by its size. For example, all 2-byte objects would have an
even address and all 4-byte objects would have addresses divisible by four.
Natural alignment is the strictest alignment requirement that any com­
puter imposes, so if all members of a structure are naturally aligned, the
structure will be portable from one computer to another. You can control
the alignment of members by using bit fields, as described in section 9.1.8.
You can also promote portability by accessing members by their names
rather than through unions or offsets from pointers.

9.1.8 offsetof Macro
The ANSI Standard provides a method of determining the byte offset of
any non-bitfield structure member. The macro takes two arguments: the
type of the structure and the member name:

offsetof(type, member-name)

and expands to an integral byte offset. The exact type of the result is speci­
fied by a macro called size_t that is defined in the stddef.h header file.
Consider the following example:

#include <stddef.h>

typedef struct
{

char widgetName[MAX_NAME] ;
int widgitCount
enum WIDGET_TYPE widgetType;

WIDGET_INFO;

size_t typeOffset = offsetof (WIDGET_INFO,
widgetType);

The variable typeOffset now contains an integer value representing the
offset of member widgetType. This information can be very helpful in de­
termining how a compiler aligns members.

9.1.9 Bit Fields

The smallest data type that C supports is char, which is usually 8 bits long.
But in structures, it is possible to declare a smaller object called a bit field.
Bit fields behave like other integer variables, except that you cannot take
the address of a bit field and you cannot declare an array of bit fields.

The syntax for declaring a bit field is shown in Figure 9-4.

www.manaraa.com

248

base type

bit field
name

Figure 9-4: Syntax of bit field declarations.

9: Structures and Unions

bit length

The base type may be int, unsigned int, or signed into If the bit field is
declared as int, the implementation is free to decide whether it is an un­
signed int or a signed into For portable code, use the signed or unsigned
qualifier. (Many compilers allow you to use enums, chars, and shorts as
the base type.)

Bit fields may be named or unnamed. Unnamed fields cannot be ac­
cessed and are used only as padding. As a special case, an unnamed bit
field with a width of zero causes the next structure member to be aligned
on the next int boundary.

The bit length is an integer constant expression that may not exceed
the length of an into On machines where ints are 16 bits long, for example,
the following is illegal:

int too_long: 17;

The compiler allocates at least a char's worth of memory and possibly
more. The precise number of bits allocated is implementation dependent,
but the compiler must allocate at least as many bits as are specified by the
bit field length, and the length must be an even multiple of chars. Consecu­
tive bit fields are packed into the allocated space until there is no room
left. Assuming your compiler allocates 16-bits for a bit field, the following
declarations would cause a, b, and c to be packed into a single 16-bit ob­
ject (see Figure 9-5).

struct
{

int a 3;
int b 7;
int c 2;

S;

However, each implementation is free to arrange the bit fields within
the object in either increasing or decreasing order, so a compiler might
arrange the bit fields as shown in Figure 9-6.

www.manaraa.com

9.1 Structures

struct
{

int a
int b
int

s;
c

1000

1002

249

3 ;
7;
2;

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 9-5: Storage of three consecutive bit fields.

struct
{

int a 3;
int b 7;
int c 2;

s;

1000

1002

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 9-6: Alternative storage of three consecutive bit fields.

Also, if a bit field would straddle an int boundary, a new memory area
may be allocated, depending on your compiler. For instance, the declara­
tion

struct
{

int a 10;
int b 10;

s;

might cause a new 16-bit area of memory to be allocated for b, as shown
in Figure 9-7. As a result, 32 bits would be allocated, even though only 20
are used. If you are using bit fields to save storage space, you should try to
arrange the fields to avoid gaps.

www.manaraa.com

250

struct
{

int a 10;
int b 10;

s;

9: Structures and Unions

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1000

1002

a
b

Figure 9-7: Storage of two consecutive bit fields straddling int boundaries.

As the preceding discussion indicates, the implementation of bit fields
varies somewhat from one compiler to another. Consequently, you should
use bit fields with care-they are inherently nonportable. There are two
situations where the use of bit fields are valid:

1. When efficient use of memory or data storage is a serious concern.

2. When you need to map a structure to a predetermined organiza­
tion.

The second situation occurs when somebody else has defined a struc­
ture that contains objects smaller than chars and you need to manipulate
this externally created structure.

As an example of using bit fields to save space, consider our DATE
structure. Because a day value cannot exceed 31 and a month value cannot
exceed 12, we can rewrite the DA TE structure using bit fields as

struct DATE
{

} ;

unsigned int day 5;
month: 4;
year : 11;

Only 20 bits are needed for the three fields. Due to the bit field alloca­
tion rules, however, some compilers would allocate 24 bits whereas others
would allocate 32 bits. Figure 9-8 and Figure 9-9 show two possible allo­
cation schemes for an array of DATE structures. Figure 9-8 assumes that
the compiler packs bit fields to the nearest char and allows bit fields to
span int boundaries. Note that each array element must begin at a char
boundary. Figure 9-9 assumes that ints are 16 bits and that the compiler
does not allow bit fields to span int boundaries.

www.manaraa.com

9.1 Structures 251

struct DATE
(

unsigned int day 5;
month : 4;
year : 11;

} ;

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1000

1002

1004 h
1006

1008

100A h

Figure 9-8: Storage of the DA TE structure with bit fields. This figure assumes that
the compiler packs bit fields to the nearest char and allows fields to span int
boundaries.

struct DATE
{

} ;

unsigned int day 5;
month : 4;
year: 11;

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1000 day month

1002 year

1004 day month

1006 year

1008 day month

100A year

Figure 9-9: Alternative storage of the DATE structure with bit fields. This figure
assumes that the compiler packs bit fields to the nearest short int and does not
allow fields to span int boundaries.

www.manaraa.com

252 9: Structures and Unions

9.1.10 Passing Structures as Function Arguments

There are two ways to pass structures as arguments: pass the structure
itself (called pass by value) or pass a pointer to the structure (called pass
by reference). The two methods are shown in the following example.

VITALSTAT vs;

func(vs); /* Pass by value -- Passes an entire
* copy of the structure.
*/

func(&vs); /* Pass by reference -- Passes the
* address of a structure.
*/

Passing the address of a structure is usually faster because only a single
pointer is copied to the argument area. Passing by value, on the other
hand, requires that the entire structure be copied. There are only two cir­
cumstances when you should pass a structure by value:

• The structure is very small (i.e., approximately the same size as a
pointer).

• You want to guarantee that the called function does not change the
structure being passed. (When an argument is passed by value, the
compiler generates a copy of the argument for the called function.
The called function can change only the value of the copy, not the
value of the argument on the calling side. This is described in
greater detail in Chapter 10.)

In all other instances, you should pass structures by reference.
Depending on which method you choose, you need to declare the ar­

gument on the receiving side as either a structure or a pointer to a struc­
ture:

or

func(vs)
VITALSTAT vs; /* Pass by value - - the argument

* is a structure.
*/

func(pvs)
VITALSTAT *pvs; /* Pass by reference -- the

* argument is a pointer to
* a structure.
*/

www.manaraa.com

9.1 Structures

Bug Alert

253

Note that the argument-passing method you choose determines which
operator you should use in the function body-the dot operator if a struc­
ture is passed by value and the right-arrow operator if the structure is
passed by reference.

Passing Structures vs. Passing Arrays

Passing structures is not the same as passing arrays. This inconsistency
in the C language can cause confusion.

To pass an array in C, you simply specify the array name without a
subscript. The compiler interprets the name as a pointer to the initial
element of the array so it really passes the array by reference. There is
no way to pass an array by value (except to embed it in a structure and
pass the structure by value).

With structures, however, the structure name is interpreted as the
entire structure, not as a pointer to the beginning of the structure. If you
use the same syntax that you u e with arrays, therefore, you wiU get
different semantics. For example,

int ar[lOO]i
struct tag st;

func(ar Ii /* Passes a pointer to the first element of
* ad]
*/

func(st I; /* Passes an entire structure */

The inconsistency follows through to the receiving side. For exam­
ple, the following two array versions are the same:

void func(int ar[] I; /* ar is converted to a
pointer to an int * /

void func(int *ar); /* ar is a pointer to an int */

But the following two structure versions are very different:

void func(struct tag st I; /* st is an entire
structure * /

void func(struct tag *st); /* st is a pointer to a
struct */

www.manaraa.com

254 9: Structures and Unions

9.1.11 Returning Structures

Just as it is possible to pass a structure or a pointer to a structure, it is also
possible to return a structure or a pointer to a structure. The declaration
of the function's return type must agree with the actual returned value.
For example,

struct tag f() /* Define a function that returns */
{ /* a struct */

struct tag st;

return st; /* Return an entire struct */

struct tag *fl() /* Define a function that returns
a pointer to a struct */

static struct tag pst;

return &pst; /* Return the address of a struct
*/

As with passing structures, you generally want to return pointers to
structures because it is more efficient. Note, however, that if you return a
pointer to a structure, the structure must have fixed duration. Otherwise,
it will cease to be valid once the function returns.

One situation for which returning structures is particularly useful is re­
turning more than one value. The return statement can send back only one
expression to the calling routine, but if that expression is a structure or a
pointer to a structure, you can indirectly return any number of values. The
following function, for instance, returns the sine, cosine, and tangent of its
argument. The functions sinO, cosO, and tanO are part of the runtime li­
brary. Each accepts an argument measured in radians and returns the cor­
responding trigonometric value. If the argument is too large, however, the
results will not be meaningful.

www.manaraa.com

9.1 Structures 255

Program
9-4

#include <stdio.h>
#include <math.h> /* include file for trig functions */
#define TOO-LARGE le6 /* Differs from one machine

typedef struct
{

* to another.
*/

double sine, cosine, tangent;
} TRIG;

TRIG *get_trigvals(double radia~val
{

static TRIG result;
/* If radia~val is too large, the sine, cosine
* and tangent values will be meaningless.
*/

if (radian_val > TOO_LARGE)
{

*/
}

printf("Input value too large .. cannot return"
"meaningful results\n");

return NULL; /* return null pointer defined in stdio.h.

result.sine = sine radian_val);
result.cosine = cost radian_val);
result.tangent = tan(radian_val);
return &result;

9.1.12 Assigning Structures

ANSI C allows you to assign a structure to a structure variable, provided
they share the same structure type. The following code extract shows some
examples of structure assignments.

struct
{

int a;
float b;

sl, s2, sf(), *ps;

sl s2;
s2 sf () ;
ps &sl;
s2 *ps;

This feature may not be available on older compilers. To assign struc­
tures using older versions of C, you need to use the memcpy() runtime li­
brary function. See Appendix A for more information about this function.

www.manaraa.com

256 9: Structures and Unions

9.2 Linked Lists

In our examples up to now, we have used an array of structures to handle
groups of data. This is a valid approach when you know beforehand ex­
actly how many structures you are manipulating. When the number is un­
known, however, arrays can be extremely costly because they force you to
allocate enough memory for the worst-case situation. This memory is re­
served and unavailable for other uses even if you use only a fraction of the
array elements. Moreover, if you need to access more memory than you
initially allocated, your program will fail.

The obvious solution is to be able to allocate memory for new struc­
tures as needed. C allows you to do this through the runtime library rou­
tines malloc() and calloc(), described in Chapter 8. But successive calls to
these routines will not guarantee that the structures will be placed con­
tiguously in memory. What is needed, therefore, is a technique for con­
necting all the structures together.

The most common way to do this is through a construct called a linked
list. A linked list is a chain of structures that are linked one to another, like
sausages. In the simplest linked-list scheme, each structure contains an
extra member, which is a pointer to the next structure in the list.

Revising our earlier vitalstat example to make a linked list, you would
write

typedef struct vitalstat
{

char vs_name[19] , vs_ssnum[ll];
unsigned int vs_day : 5,
vs_month : 5,
vs..Year : 11;
struct vitalstat *vs_next;

VITALSTAT;

Pictorially, a linked list looks like Figure 9-10. This is a singly linked
list because it goes in only one direction. There are also doubly linked lists,
in which each structure contains two pointers, one to the next element and
one to the previous element. The following discussion and examples, how­
ever, are confined to singly linked lists.

In a typical linked-list application, you need to perform the following
operations:

• Create a list element

• Add elements to the end of a list

• Insert elements in the middle of a list

• Remove an element from a list

• Find a particular element in a list

www.manaraa.com

9.2 Linked Lists 257

Program
9-5

Program
vstat.h

Each of these tasks (except the last one) can be written as a
self-contained and generalized function that will work no matter how the
structures are configured.

Data Data

Data

Figure 9-10: A singly linked list.

9.2.1 Creating a Linked-List Element

To create a linked-list element, all you need to do is allocate memory for
the structure and return a pointer to this memory area.

#include "v_stat.h"
#include <malloc.h>
#include <stdlib.h>
#include <stdio.h>

ELEMENT *create_Iist_element()
{

ELEMENT *P;
P = (ELEMENT *) malloc(sizeof (ELEMENT))i
if (p == NULL)
(

printf("create_list_element: malloc failed.\n");
exit (I);

p->next = NULL;
return p;

To make the function as general as possible, we use the name
ELEMENT, which gives no clue about the actual type of data being ma­
nipulated. For this function to work for the vitalstat structure, we would
need to include the following typedefs in v_stat.h.

#define NULL 0

typedef struct element {
VITALSTAT vs;;
struct element *next;

} ELEMENT;

www.manaraa.com

258

Program
9-6

9: Structures and Unions

ELEMENT becomes synonymous with struct vitalstat. Note in the
declaration of create_list() that it returns a value of type ELEMENT~·.
Note also that you must use a tag name rather than a typedef to declare
the pointer next. This self-referencing is legal if you identify the structure
by its tag name, but not if you identify it by a typedef name. This is be­
cause the typedef name is not defined until the end of the declaration.

9.2.2 Adding Elements

The create_lisCelement() function allocates memory, but it doesn't link the
element to the list. For this, we need an additional function, which we call
add_element():

#include "v_stat.h"

static ELEMENT *head;

void ad~element(ELEMENT *e)
{

ELEMENT *p;
/* If the first element (the head) has not been

* created, create it now.
*/

if (head == NULL)
{

head = e;
return;

/* Otherwise, find the last element in the list */
for (p = head; p->next != NULL; P = p->next)

; /* null statement */
p->next = e;

This example has a number of interesting aspects. The variable head
serves as a pointer to the beginning of the linked list. It is declared with file
scope so that it will be available to a number of functions. However, all
functions that use head must exist in the same source file.

The purpose of the for loop is to find the last element of the list. It goes
through each element, testing to see whether p.next is NULL. If not,
p.next must point to another element. When p.next does equal NULL, we
have found the end of the list and we end the for loop. The assignment

p'>next = e;

appends a new structure to the end of the list. The argument, e, is a
pointer to a structure that has been allocated by the calling function.

www.manaraa.com

9.2 Linked Lists 259

Program
9-7

Program
9-8

To create a linked list containing ten vitalstat structures, we could
write:

#include "v stat.h"
static ELEMENT *head;

void main(int argc, char *argv[J)
{

int j;

for (j=O; j < 10; ++j)
add_element (create_list_element());

9.2.3 Inserting an Element

To insert an element in a linked list, you must specify where you want the
new element inserted. The following function accepts two pointer argu­
ments, p and q, and inserts the structure pointed to by p just after the
structure pointed to by q (see Figure 9-11).

/* insert p after q */

#include "v_stat.h"

void insert_after(ELEMENT *p, ELEMENT *q)
[
/* Perform sanity check on arguments _
* If P and q are the same or NULL, or if p
* already follows q, report.
*/
if (p == NULL II q == NULL II p == q II
q->next == p)
{

printf("insert_after: Bad arguments\n");
return;

p->next
q->next

q->next;
p;

www.manaraa.com

260 9: Structures and Unions

q q->next

Before:

q q->next->next

After:

p

Figure 9-11: Linked-list insertion.

9.2.4 Deleting an Element

Deleting an element in a singly linked list is a little trickier because you
need to find the element before the one you are deleting so that you can
bond the list back together after removing one of the links. You also need
to use the freeO function, described in Chapter 8, to free up the memory
used by the deleted element. Figure 9-12 illustrates the operation of the
delete_element() function.

p goner p->next

Before:

p p->next

After:

Figure 9-12: Linked-list deletion.

www.manaraa.com

9.2 Linked Lists 261

Program #include "v_stat.h"
9-9 static ELEMENT *head;

void delete_element< ELEMENT *goner)
{

ELEMENT *p;

if (goner == head)
head = goner->next;

else
{/* Find element preceding the one to be deleted */

for (p = head; (p != NULL) && (p->next != goner);
p = p->next)
; /* null statement *1

if (p == NULL)
{

printf("delete_element: can't find element in"
"list.\n");

return;

p->next = p->next ->next;

free (goner) ;

The right-arrow operator binds from left to right, so the expression

p->next->next

is evaluated as if it had been written

(p->next) ->next

9.2.5 Finding an Element

There is no easy way to create a general-purpose (indO function because
you usually search for an element based on one of its data fields, which
depends on the structure being used. To write a general-purpose (indO
function, you need to use pointers to (unctions, which are described in the
next chapter.

The function in Program 9-10, based on the vita/stat structure,
searches for an element whose vs_name field matches the argument.

www.manaraa.com

262

Program
9-10

#include "v_stat . h"
static ELEMENT *head;

ELEMENT *find(char *name
{

ELEMENT "p;

for (p = head; p != NULL; p = p->next)
if (strcmp(p->vs_name, name) == 0)

return p;
return NULL;

9: Structures and Unions

9.3 Unions

Unions are similar to structures except that the members are overlaid one
on top of another, so members share the same memory. For example, the
following declaration results in the storage shown in Figure 9-13.

typedef union
{

struct
{

char cl, c2;
} s;
long j;
float x;

U;
U example;

The compiler always allocates enough memory to hold the largest
member, and all members begin at the same address. The data stored in a
union depends on which union member you use. For example, the assign­
ments

example.s.c! = 'a';
example . s.c2 = 'b';

would result in the storage shown in Figure 9-14.
But if you make the assignment

example.j = 5;

it would overwrite the two characters, using all four bytes to store the in­
teger value 5.

Unions obey the same syntactic rules as structures. You can access ele­
ments with either the dot operator or the right-arrow operator; you can
declare bit fields, and you can use tag names.

www.manaraa.com

9.3 Unions 263

There are two basic applications for unions:

• Interpreting the same memory in different ways.

• Creating flexible structures (called variant records in Pascal) that
can hold different types of data.

typedef union
{

struct
{

char cl, c2;

u;

S;
long j;
float X;

U example;

1000

cl

1001

c2

j

x

Figure 9-13: Example of union memory storage.

example.s.cl 'a';
example.s.c2 'b';

1000

'a'

1001

'b'

1002

1002

Figure 9-14: Storage in example union after assignment.

1003

1003

www.manaraa.com

264

Program
9-11

9: Structures and Unions

9.3.1 Interpreting Data Differently

As an example of interpreting data differently, consider the common
communications problem in which data comes over the line byte by byte.
Unions provide a way of grouping bytes together so that they can be re­
constructed into their original form. For instance, suppose get_byte() is a
function that returns a single byte from a communications device. An
eight-byte double value can be extracted from the communications device
through eight successive calls to gecbyte(), as shown in the following
function.

union doub
{

char c[8];
double val;

} ;

double get_double(void)
{

extern char get-pyte();
int j;
union doub d;

for (j=O; j < 8; j++)
d.c[j] = get-pyte();

return d.val;

We store each successive character in the next element of cU. Then
when we want the double value, we access the union using the val mem­
ber.

One area of confusion among many C programmers is the difference
between conversions using unions and conversions using casts. Accessing a
union through different members does not affect the actual bits in memory
in any way. The compiler simply uses different interpretations for the bits.
Likewise, a cast does not affect the bits in storage. But instead of inter­
preting them differently, it converts the value they represent into the target
type. The example in Program 9-12 should make this clearer.

The results are:

The value of lng_var cast to a float is: 10.000000
The value of float_element after
assignment to long_element is: 0.000000
The value of flt_var cast to a long is 3
The value of lon~element after an
assignment to float element is: 1074557091

In a cast, the compiler makes every attempt to preserve the true value.
So when casting a long to a float, the compiler simply adds a fractional
part equal to zero. And when casting a float to a long, the compiler trun­
cates the fractional part. In a union, on the other hand, the compiler ig-

www.manaraa.com

9.3 Unions

Program
9-12

265

nores the true value-it is interested only in the bit sequence. The values
we receive from the program are machine dependent because they depend
on the way our system stores longs and floats. Both casts and unions are
powerful tools, but it is important not to confuse the two.

#include <stdio.h>

int main(void)
{

union {
long long_element;
float float_element;

J u;
long lng_var;
float fl t_var;

lng_var = u.long_element = 10;
printf("The value of lng_var cast to a float is: %f\n",

(float) ln9_var);
printf("The value of float element after\n"

"assignment to long_element is: ,\f\n\n",
u.float_element);

flt_var = u.float_element = 3.555;

printf("The value of flt_var cast to a long is: '\d\n" ,
(long) flt_var);

printf("The value of long_element after an \n"
"assignment to float_element is: '\d\n" ,
u.lon9_element);

9.3.2 Initializing Unions

In ANSI C (although not K&R C), you can initialize a union by assigning
the initialization value to the first union component:

union init_example
{

} ;

int i;
float f;

/* Assigns 1 to test.i */
union init_example test = {I};

If the first component of a union is a structure, the entire structure may
be initialized as in:

www.manaraa.com

266

union u
{

} ;

struct { int i; float f; } S;
char ch [6];

/* Assigns 1 to test.2.S.i and 1.0 to
* test2.S.f
*/

union u test2 = { 1 , 1.0 };

9.3.3 Variant Records

9: Structures and Unions

The other application of unions is in creating a single structure that can
hold different types of values. For example, suppose you want to add three
additional pieces of information to the vita/stat structure:

• Are you a U.S. citizen?

• If not a U.S. citizen, what is your nationality?

• If you are a U.S. citizen, in what city were you born?

One way to add this information is to declare three new fields:

struct vitalstat
{

} ;

struck vitalstat *next;
char name[19], ssnum[ll];
unsigned ink vs_day: 5,
vs_month : 4,
vs-year : 11;
unsigned UScitizen : 1; /* Bit field for U.S.

citizenship */
char nationality[20];
char city_of_birth[20] ;

Note, however, that one of these new members will always be empty. If
the UScitizen bit is set, nationality will be empty; if UScitizen is zero,
city_of_birth will be empty. Because these two fields are mutually exclu­
sive, you can have them overlap in memory by declaring a union:

struck vitalstat
{

} ;

struck vita1stat *next;
char name [19] , ssnum[ll];
unsigned ink vs_day : 5,
vs_month : 4,
vs-year : 11;
unsigned UScitizen : 1; /* Bit field for U.S.

ci tizenship * /
union

char nationa1ity[20] ;
char city_of_birth[20];

location;

www.manaraa.com

9.4 enum Declarations 267

This saves us 20 bytes of memory for each structure. For a large array
of structures, this can result in significant savings. The following functions
(Program 9-13) show how you would use the UScitizen member to decide
which union member to access. The key function is get_city_info(); the
other two functions-double_check() and is-yes()-are general-purpose
functions for processing user input. These functions make use of the run­
time function fgetc(), which reads a string from the specified file or device.
For more information about fgetc(), read Section A.13.6.

Note that the union member accessed depends on the value of USciti­
zen. This is typical of variant records, in which one member serves as a
selector of union members.

9.4 enum Declarations

Just as it is possible to declare tag names for structures and unions, it is
also possible to declare tag names for enum types. For instance, the decla­
ration

enum types {INT, LONG_INT, FLOAT, DOUBLE, POINTER};

defines the tag name types, which can then be used in future declarations.
For example,

enum types t1;
enum types *ptypes;
enum types ar_types [5] ;
enum types f_types ();

/* pointer to types enum */
/* array of types enums */
/* function returning types

* enum
*/

You can also use a typedef:

typedef enum
INT, LONG_INT, FLOAT, DOUBLE,
POINTER

} TYPES;

Now you can make the declarations:

TYPES tl;
TYPES *ptypes;
TYPES ar_types[5];
TYPES f_types();

/* pointer to TYPES enum */
/* array of TYPES enums * /
/* function returning TYPES

* enum */

As with typedefs of structures and unions, enum typedefs are generally
placed in a header file where they can be accessed by multiple source files.

www.manaraa.com

268

Program
9-13

#include <stdio.h>
#include <string.h>

9: Structures and Unions

#include "v stat2.h" /* includes location union */
#define TRUE 1
#define FALSE 0

static int is-yes(void)
{

char answer [64] ;
while (1)
(

fgets(answer, sizeof (answer), stdin);
switch (answer [O])
{
case 'y':
case 'Y': return TRUE;
case 'n':
case 'N':
default
}

return FALSE;
printf("Please answer Y or N\n");

/* Remove trailing newline (if any), and see if
* user typed the right entry.
*/

static int double_check(char *s
{

int last_char = strlen(5 - 1;
if (s[last_char] == '\n')

s[last_char] = 0;
printf("Is '\5' correct? (Y or N) " sl;
return is-yes();

void get_city_info(VITALSTAT *pvsl
(

int answered = FALSE;

printf("Are you a U.S. citizen? "I;
pvs->uScitizen = is-yes();
while (!answered)
if (!pvs->UScitizen)
{

}

printf ("What is your nationality?");
fgets(pvs->location.nationality

, sizeof(pvs->location.nationality). stdin);
answered = double_check(pvs->location.nationality);

else /* UScitizen */
{

printf ("Enter city of birth: ");
fgets(pvs ->location.city_of-Pirth

,sizeof(pvs->location.city_of-Pirth). stdin);
a.nswered = double_check (pvs->location. city_of-pirth) ;

www.manaraa.com

9.5 Exercises 269

9.5 Exercises

1. In many commercial applications, integers are represented in a form
called BCD (Binary-Coded Decimal). In BCD form, each digit is repre­
sented by 4 bits. An 8-digit integer, for example, would require 32
bits. Write two functions: one that converts integers into BCD format
and another that converts BCD integers into their original form. Use
bit fields to store each BCD digit.

2. Write a function that accepts two pointers, each to a linked list, and
concatenates the two lists, attaching the second list to the first.

3. A stack is a special kind of list that has the following two properties:

You can add elements only at the end of the list. This is called
pushing.

You can remove elements only from the end of the list. This is
called popping.

Write two functions, push() and pop(), that perform these stack tasks.

4. Stacks are called first in, last out (FILO) queues because the first ele­
ment pushed onto the stack is always the last one popped. Using
push(), pop(), and any other functions you need, write a program that
reads a line from the terminal and determines whether it is a palin­
drome. A palindrome is a string that is the same spelled forward or
backward. For example, "Able was I ere I saw Elba. "

5. The o((seto(macro uses an interesting set of C pointer and casting
expressions. The macro typically looks like

#define offsetof(t, rn) (size_t) & ((t*)O->rn)

Explain exactly why the code above produces the byte offset of a
structure member. Can you think of a different way to perform 0((­
setof?

www.manaraa.com

10
Functions

You are fond of argument, and now you fancy
that I am a bag full of arguments.

Socrates, Theoetus

We have been using functions throughout the previous chapters and have
discussed in passing some of their essential features. In this chapter, we
take a more rigorous look at functions and introduce some new topics,
including pointers to functions and recursion.

10.1 Passing Arguments

Arguments to a function are a means of passing data to the function.
Many programming languages pass arguments by reference, which means
they pass a pointer to the argument. As a result, the called function can
actually change the value of the argument. In C, arguments are passed by
value, which means that a copy of the argument is passed to the function.
The function can change the value of this copy, but cannot change the
value of the argument in the calling routine. Figure 10-1 shows the differ­
ence. Note that the arrows in the call-by-reference picture point in both
directions, whereas the call-by-value arrows go in only one direction. The
argument that is passed is often called an actual argument, whereas the
received copy is called a formal argument or formal parameter.

Because C passes arguments by value, a function can assign values to
the formal arguments without affecting the actual arguments. For exam­
ple,

www.manaraa.com

10.1 Passing Arguments 271

Program
10-1

#include <stdio.h>
#include <stdlib.h>

int maine void)
I

extern void feint);
int a = 2;

f(a); /* pass a copy of "a" to "fll" */
printf(U%d\n", a);
exit (0) ;

void f(int receive~arg)
I
receive~arg = 3; /* Assign 3 to argument copy */

In the example above, the printfO function prints 2, not 3, because the
formal argument, received_arg in fO, is just a copy of the actual argument
a. C matches actual arguments in the call to the corresponding formal ar­
guments in the function definition, regardless of the names used. That is,
the first actual argument is matched to the first formal argument, the sec­
ond actual argument to the second formal argument, and so on. For cor­
rect results, the types of the corresponding actual and formal arguments
should be the same.

If you do want a function to change the value of an object, you must
pass a pointer to the object and then make an assignment through the
dereferenced pointer. The following, for example, is a function that swaps
the values of two integer variables.

Program /* Swap the values of two int variables */
10-2

Program
10-3

void swap(int *x, int *y)
(

register int temp;
temp = *x;
*x *y;
*y = temp;

To call this function, you need to pass two addresses:

int main! void)
{

int a = 2, b = 3;
swap (&a, &b);
printf("a = %d\t b = %d\n", a, b);

www.manaraa.com

272

Executing this program yields

a = 3 b = 2

10: Functions

The pass-by-value method explains the purpose of the address of op­
erator in scanfO calls. When you write

scanf (n!lsdn, &num);

the two arguments tell the function what type of data to read (%d indi­
cates an integer) and where to store it (at the address of num). If you
passed the variables themselves, there would be no way for scanfO to
make assignments to them. By passing the addresses, you give scanfO ac­
cess to the variables so it can assign values to them.

Calling Function Called Function
Pass by Reference

actual address of formal
argument argument argument

Pass by Value

actual value of formal
argument argument argument

Figure 10-1: Pass by reference vs. pass by value. In pass by reference, the actual
and formal arguments refer to the same memory area; in pass by value, the formal
argument is a copy of the actual argument.

10.2 Declarations and Calls

Functions can appear in a program in three forms:

Definition

Function
Allusion

Function Call

A declaration that actually defines what the function
does, as well as the number and type of arguments.

Declares a function that is defined elsewhere. A func­
tion allusion specifies what kind of value the function
returns. Function allusions that include a prototype also
specify the number and types of arguments.

Invokes a function, causing program execution to jump
to the invoked function. When the called function re­
turns, execution resumes at the point just after the call.

www.manaraa.com

10.2 Declarations and Calls 273

10.2.1 Fundion Definition Syntax

There are actually two formats for defining a function. The new syntax.
known as prototype form, is shown in Figure 10-2. The old format, called
traditional form, is shown in Figure 10-3. For example,

/* Traditional fODn function definition */
int func_def(c, f)
char *c;
double f;
{

is equivalent to:

/* Prototype fODn function definition */
int func_def (char *c, double f)
{

Figure 10-2: Syntax of a prototype form function declaration.

www.manaraa.com

274 10: Functions

The two forms are semantically equivalent. The only important syntac­
tic difference is that the prototype form requires a separate type for each
argument, whereas the traditional form allows arguments of the same type
to be listed together like a normal declaration:

/* Traditional form function definition */
int func(a, b, c)
int a, b, c;
{

/* Prototype form function definition */
int func(int a, int b, int c);
{

The prototype form is consistent with prototyped function allusions,
which allows you to use the same declaration for both the definition and
the prototype. Throughout this book, we use the prototype form, but you
may run across the old format if you look at code written before the
1990s.

Figure 10-3: Traditional syntax of a fundion definition.

www.manaraa.com

10.2 Declarations and Calls 275

10.2.2 Return Type

The return type defaults to int if you leave it blank. However, even if the
return type is int, you should specify it explicitly to avoid confusion.

If the function does not return an int, you must specify the true return
type. If the function does not return any value, you should specify a return
type of void. Before void became a common feature of C compilers, it was
a convention to leave off the return type when there was no return value.
The return type would default to int, but the context in which the function
was used would usually make it clear that no meaningful value was re­
turned. With modern C compilers, however, there is no excuse for omit­
ting the return type.

10.2.3 Choosing Function Names

Selecting a good function name is one of the most important decisions you
make about a function. It is one of the keys to writing readable code. Ide­
ally, the function name should encapsulate everything the function does.
For a function that doesn't return anything, use a descriptive
verb/object/property phrase such as:

void drawChartWithTimeBase(dataSet);

It's OK to use multiple words as long as you separate words visually
with a special character such as an underscore or you capitalize the first
letter of each word. Without some visual key to separate words, function
names can sometimes be very misleading. We recently came across a func­
tion from a well-known software company that was named (artonear{). It
took us a moment to realize that that the function indicated conversion of
a far pointer to a near one, not some type of aural flatulence.

For functions that return a value, describe the returned value and how
the function obtains it. For example:

int getBufLen ()

For functions returning a boolean value, use a name that reads well in
an if statement:

if (hasTimeColumn(chart))

If you find that describing everything a function does requires an ex­
tremely long name, this is a strong clue that the function is doing too
much and should be broken down into a simpler set of operations. Avoid
using nonspecific names such as book_keeping or processData. The reader
of such names will be forced to examine the code in the body of the func­
tion to discover the function's true purpose. Likewise, avoid names that
focus on an unimportant aspect of function behavior. For example, if a
function returns a character from a token buffer by incrementing and
dereferencing a pointer to the buffer, do not call the function incrementO

www.manaraa.com

276 10: Functions

or even incrementAndDereferenceTokenBuffer{}; just call it getNextTo­
kenChar{}.

10.2.4 Argument Declarations

With both the new and old formats, you can specify any number of argu­
ments, including zero. However you should try to avoid functions with
more than seven arguments. Studies have shown that people have trouble
remembering more than seven things at a time. To help make sense of
multi-argument functions, it is a good idea to have a consistent practice
with regard to argument ordering. For instance, the C runtime library con­
sistently places destination arguments first and source arguments next (see,
for example, strcpy(), strncpy{}, and memcpy()).

You should enter void if the function takes no arguments:

int func_with_no_args (void);

The void is not absolutely necessary, but it ensures that the definition
will be the same as the prototype, where the void is required.

Argument declarations obey the same rules as other variable declara­
tions, with the following exceptions:

• The only legal storage class is register.

• If the function is not prototyped, chars and shorts are converted to
ints; floats are converted to doubles. For prototyped functions, ac­
tual arguments are converted to the types of the formal arguments,
just as they would be for a normal assignment.

• A formal argument declared as an array is converted to a pointer
to an object of the array type.

• A formal argument declared as a function is converted to a pointer
to a function.

• You may not include an initializer in an argument declaration.

It is legal to omit an argument declaration, in which case the argument
type defaults to into This is considered very poor style, however.

10.2.4.1 The Function Body

The body of a function is delimited by a set of right and left braces. The
only type of statement allowed outside a function body is a declaration.

The body of a function can be empty, which can be useful in the design
stages of a software product. One of the first tasks in designing a large
program is to define a set of high-level operations that correspond to func­
tions. During this stage, it can be useful to have a function that does
nothing but return, to serve as a placeholder for future functionality.

www.manaraa.com

10.2 Declarations and Calls 277

These are called stubs. The following, for instance, is a legal C function
that does nothing but return when called.

void operationl() {}

Later, you can fill in the function with some meaningful code.

10.2.4.2 Return Values

Functions can return only a single value directly via the return statement.
The return value can be any type except an array or function. This means
that it is possible to indirectly return more than a single value by passing a
pointer to an aggregate type. It is also possible to return a structure or
union directly, although this is not generally recommended because it is
inefficient.

The syntax for a return statement is shown in Figure 10-4.

expression

Figure 10-4: Syntax of a return statement.

Many C programmers enclose the return expression in parentheses.
The parentheses, however, are optional, and we find that they enhance
readability only when the return value is a complicated expression.

A function may contain any number of return statements. The first one
encountered in the normal flow of control is executed and causes program
control to be returned to the calling routine. If there is no return state­
ment, program control returns to the calling routine when the right brace
of the function is reached. In this case, the value returned is undefined.

The return value must be assignment-compatible with the type of the
function. This means that the compiler uses the same rules for allowable
types on either side of an assignment operator to determine allowable re­
turn types. For example, if f() is declared as a function returning an int, it
is legal to return any arithmetic type, because they can all be converted to
an into It would be illegal, however, to return an aggregate type or a
pointer because these are incompatible types. The following example
shows a function that returns a float, and some legal return values.

www.manaraa.com

278

Program
10-4

Program
10-5

10: Functions

float fO
(

float f2;
int a;
char c;

f2 = a; 1* OK, quietly converts a to float *1
return a; 1* OK, quietly converts a to float *1
f2 = c; 1* OK, quietly converts c to float *1
return c; 1* OK, quietly converts c to float *1

The C language is more picky about matching pointers. In the follow­
ing example, f() is declared as a function returning a pointer to a char.
Some legal and illegal return statements are shown below:

char *f ()
(

char **cpp, *cpl, *cp2, carlO);
int *ipl;

cpl = cp2; 1* OK, types match *1
return cp2; 1* OK, types match *1
cpl = *cpp; 1* OK, types match *1
return *cpp;l* OK, types match *1

1* An array name without a subscript gets converted
* to a pointer to the first element.
*1

cpl = ca;
return ca;
cpl = *cp2;

1*
1*
1*
1*

return *cp2;1*
1*

cpl = ipl; 1*
return ipl; 1*
return; 1*

1*

OK, types match *1
OK, types match *1
Error, mismatched types *1
(pointer to char vs. char) *1
Error, mismatched types *1
(pointer to char vs. charl *1
Error, mismatched pointer types *1
Error, mismatched pointer types *1
Produces undefined behavior *1
should return (char *l *1

Note in the last statement that the behavior is undefined if you return
nothing. The only time you can safely use return without an expression is
when the function type is void.

10.2.5 Function Allusions (Prototypes)

A function allusion is a declaration of a function that is defined elsewhere,
usually in a different source file. The main purpose of the function allusion
is to tell the compiler what type of value the function returns and to de­
clare the number and types of arguments that the function takes.

www.manaraa.com

10.2 Declarations and Calls 279

By default, all functions are assumed to return an into You are strictly
required, therefore, to include function allusions only for functions that do
not return an into However, it is good style to include function allusions
for all functions that you call. It makes it possible for a reader to deter­
mine what functions are called merely by looking at the declaration sec­
tion, rather than having to wade through the entire routine. And it enables
the compiler to perform compile-time checks on the number and type of
arguments. You should not include function allusions to functions that are
not called because this can be misleading. (Sometimes this is unavoidable,
particularly when you include a header file that contains allusions to many
functions, only a few of which you actually use.)

There are actually two types of function allusions: prototypes and non­
proto typed declarations. A nonprototyped function allusion declares the
return type of the function, but not the number or type of arguments:

extern old_func_allusion();

Prior to the ANSI Standard, this was the only type of function allusion
supported by C. It was probably the weakest part of the C language be­
cause it did not allow the compiler to ensure that the correct number and
types of arguments were passed during function invocations.

The ANSI Committee addressed this shortcoming by borrowing the
function prototype syntax and semantics of the C++ language. Function
prototypes enable function allusions to include data type information
about arguments. For example:

extern int protoyped_func(int j, float x;)

This has two main benefits:

• The compiler checks that the types of the actual arguments in the
function call are compatible with the types of the formal argu­
ments specified in the function allusion.

• Automatic argument conversions are no longer required. Floating
types need not be converted to double and small integers need not
be widened to into This can significantly speed up algorithms that
make intensive use of small integer or floating-point data.

ANSI C supports both prototyped and nonprototyped function allu­
sions. In this chapter, and throughout the book, we describe only proto­
typed function allusions.

The syntax for a function allusion is shown in Figure 10-5. For exam­
ple, the function allusion

extern void func(int, float, char *);

declares a function that accepts three arguments-an int, a float, and a
pointer to a char. The argument types may optionally include argument
names. For example, the previous declaration could also be written

extern void func(int a, float b, char *pc);

www.manaraa.com

280 10: Functions

The argument names have no meaning other than to make the type
declarations easier to read and write. No storage is allocated for them, and
the names do not conflict with real variables with the same name.

If you attempt to call this function with

func(j, x);

the compiler should report an error because the call contains only two
arguments whereas the prototype specifies three arguments. Also, if the
argument types cannot be converted to the types specified in the proto­
type, a compilation error occurs. The rules for converting arguments are
the same as for assignments (see Chapter 4). The following, for example,
should produce an error because the compiler cannot automatically con­
vert a pointer to a float.

extern void f(int *);
float x;
f(x); /* ILLEGAL .. cannot convert a float

* to a pointer
*/

If the compiler can quietly convert an argument to the type of its proto­
type, it does so, although most modern compilers issue a warning if a loss
of precision occurs. For instance, if you convert a float to an int, it may
happen that the float value cannot be represented as an into In the follow­
ing example, j is converted to a float and x is converted to a short before
they are passed.

extern void f (float, short);
double x;
long j;

.
f(j, x); /* OK .. long is converted to

* float, and double is converted
* to short.
*/

Without prototyping, this example would produce erroneous results
because fO would treat j as a float and x as a short. Prototyping ensures
that the correct number of arguments are passed, and it prohibits passing
of arguments that cannot he quietly converted to the correct type. On the
other hand, it does quietly convert arguments when it can. This could re­
sult in unexpected conversions that lead to erroneous results. Of course,
this error is just as likely to occur without prototypes. Prototypes give you
type checking for certain types of data, particularly pointers, but not for
integer arid floating-point types.

www.manaraa.com

10.2 Declarations and Calls 281

Figure 10-5: Syntax of a function allusion.

To declare a function that takes no arguments, use the void type speci­
fier:

extern int f(void) 1* This function takes no
* arguments.

Typically, a function allusion appears at the head of a block with other
declarations. You can mix function allusions with declarations of other
variables. For example, the following statement declares a pointer to a
float, an array of floats, and a function returning a float.

extern float *pflt, arr_flt [10], func_flt (void);

Although the previous declarations are legal, it is better from a stylistic
viewpoint to keep function declarations separate from declarations of
variables:

extern float func_flt(void);
extern float *pflt, arr_flt[lO];

The scope of a function allusion follows the same rules as other vari­
ables. Functions alluded to within a block have block scope; functions al­
luded to outside a block have file scope.

Note, however, that the default storage class rules are different for
functions than for other variables. If you omit the storage class, it defaults
to extern, signifying that the function definition may appear in the same
source file or in another source module. The only other legal storage class
is static, which indicates that the function is defined in the same source
file. The data type in the function allusion should agree with the return
type specified in the definition.

www.manaraa.com

282 10: Functions

For example, in the following declaration, the storage class of p{lt and
arr Jlt[] defaults to auto, whereas the storage class of funcJlt{} defaults to
extern.

float func~lt(void);
float *pflt, arr_flt[lO];

If this declaration appeared outside a block, p{lt and arr Jlt[] would be
global definitions, whereas funcJlt{} would still be a function allusion.

10.2.6 Function Calls

A function call, also called a function invocation, passes program control
to the specified function. The syntax for a function call is shown in Figure
10-6. A function call is an expression and can appear anywhere an expres­
sion can appear. Unless they are declared as returning void, functions al­
ways return a value that is substituted for the function call. For example,
if f() returns 1, the statement

a = f 0 /3;

is equivalent to

a = 1/3;

It is also possible to call a function without using the return value. The
statement

fO;

calls the function fO but does not use the return value. If fO returns 1, the
statement is equivalent to

1;

which is a legal C statement, although it is a no-op (no operation is per­
formed, assuming fO has no side effects).

Normally, you would ignore the return value only if the function re­
turns void. However, if you want to ignore a real return value, it is better
to cast it to void. For example,

(void) f();

is functionally equivalent to

fO;

but it makes it clear to you and others that you are deliberately ignoring
the return value. Of course, we frequently break this rule when we call
printfO and scanfO, which both return values. The return value of scanfO
can, in fact, be very useful because it returns the number of objects that
are actually assigned values. Stylistically, we should probably cast these

www.manaraa.com

10.2 Declarations and Calls 283

functions to void when we ignore the return value. In some cases, how­
ever, it is better to follow familiar conventions, even if they are not stylisti­
cally perfect.

Future Feature: Nonoverlapping Arrays

A problem with pointers and the C language is that fast computers em­
ploying multiple processors or vector units to speed up processing can­
not easily use array arguments in the C language. This is because
arguments declared as arrays are converted to pointer types, and few
restrictions are placed on what data items the pointer may point to. The
ANSI Standard warns that future versions of C may distinguish between
arguments declared as "pointer to" and arguments declared as "array
of." In particular each parameter declared as an array wiU be con­
strained to reference only a single array, and no other array parameter
may overlap it. This will allow a compiler to generate optimized code
for processing arrays. Consider the following example:

/* may "vectorize" under future versions of C */

void vadd(float vecl[). float vec2[]. float vec3[J)
{

int a;
for (a = 0; a < 32; a++)
vecl[a] = vec2[a] + vec3[a);

Under existing rules, the compiler must assume the worst, that veel
overlaps with vee2 or ved such that early assignments to veel affect
later references to vee2 or ved. This forces the compiler to generate
conventional sequential code for vadd. In the future, a compiler will be
able to generate a single vector add instruction to simultaneously add all
of /lee2 and ved followed by a single vector store to /led, or assign a
different processor to each loop of the for statement.

If you write code with array references that overlap and you want to
be sure that it is executed sequentially on parallel or vector machines,
you should use pointer notation in your declarations.

10.2.6.1 Prototyping a Variable Number of Arguments

If a function accepts a variable number of arguments (printf(), for exam­
ple), you can use the ellipsis token" ... ". The prototype for printf() is

int printf(canst char *format, ...);

This indicates that the first argument is a character string and that
there is an unspecified number of additional arguments. See Section A.12

www.manaraa.com

284 10: Functions

for more information about referencing arguments to functions that take a
variable number of arguments.

Figure 10-6: Syntax of a function call.

10.3 Pointers to Functions

Pointers to functions are a powerful tool because they provide an elegant
way to call different functions based on the input data. Before discussing
pointers to functions, however, we need to describe more explicitly how
the compiler interprets function declarations and invocations.

The syntax for declaring and invoking functions is very similar to the
syntax for declaring and referencing arrays. In the declaration

int ar[S];

the symbol ar is a pointer to the initial element of the array. When the
symbol is followed by a subscript enclosed in brackets, the pointer is in­
dexed and then dereferenced. An analogous process occurs with functions.
In the declaration

extern int f(void);

the symbol f by itself is a pointer to a function. When a function is fol­
lowed by a list of arguments enclosed in parentheses, the pointer is
dereferenced (which is another way of saying the function is called). Note,
however, that just as ar in

int ar[S];

is a constant pointer, so, too, fin

extern int f(void);

is a constant pointer. Hence, it is illegal to assign a value to f. To declare a
variable pointer to a function, you must precede the pointer name with an
asterisk. For example,

int (*pf) (void); /* pf is a pointer to a function
* returning an into
*/

www.manaraa.com

10.3 Pointers to Functions 285

declares a pointer variable that is capable of holding a pointer to a func­
tion that returns an into The parentheses around *p{ are necessary for cor­
rect grouping. Without them, the declaration

int *pf(void)

would make p{ a function returning a pointer to an into

10.3.1 Assigning a Value to a Function Pointer

To obtain the address of a function, you merely enter a function name
without the argument list enclosed in parentheses. For example,

extern int fl(void);

1* Declare pf as "pointer to function returning
* int"
*1

int (*pf) (void);
pf = fl; 1* assign address of fl to pf *1

If you include the parentheses, then it is a function call. For example, if
you write

pf = fl(); 1* ILLEGAL -- fl returns an int,
* but pf is a pointer *1

you should get a compiler error because you are attempting to assign the
returned value of {1 () (an int) to a pointer variable, which is illegal.

If you write

pf = &fl(); 1* ILLEGAL -- cannot take the address
* of a function result. */

the compiler will attempt to assign the address of the returned value. This
too is illegal. Lastly, you could write

pf = &fl; 1* ILLEGAL -- &fl is a pointer to
* a pointer, but pf is a pointer to
* an into
*/

On older C compilers, this would also cause a compile error (or warn­
ing) because the compiler would interpret {1 as an address of a function,
and the address of (&) operator attempts to take the address of an ad­
dress. C does not permit this. Even if it did, the result would be a pointer
to a pointer to a function, which is incompatible with a simple pointer to a
function. (The ANSI Standard allows this syntax by ignoring the & opera­
tor.)

We point out all of these wrong ways of assigning a pointer to a func­
tion because nearly everyone, in their initial stages of learning C, tries one
or more of these possibilities.

www.manaraa.com

286

Program
10-7

10: Functions

10.3.2 Return Type Agreement

The other important point to remember about assigning values to function
pointers is that the return types must agree. If you declare a pointer to a
function that returns an int, you must assign the address of a function that
returns an int, not the address of a function that returns a char, a float, or
some other type. If the types don't agree, you should receive a com­
pile-time error. The following example shows some legal and illegal func­
tion pointer assignments.

extern int ifl (), if2 (), (*pif) () ;
extern float ffl (), (*pff) () ;
extern char cfl (), (*pcf) () ;

int main (void)
(

pif ifl; /* Legal types match */
pif cfl; /* ILLEGAL type mismatch */
pff if2; /* ILLEGAL type mismatch */
pcf cfl; /* Legal types match */
ifl :0 if2; /* ILLEGAL Assign to a constant

10.3.3 Calling a Function Using Pointers

*/

To dereference a function pointer, thereby calling a function, you use the
same syntax you use to declare the function pointer, except this time you
include parentheses and possibly arguments. For example,

extern int fl(void);
int (*pf) (int);
int a, answer;

pf = H;
answer = (*pf) (a); /* Calls function fl() with

* argument a
*/

As with the declaration, the parentheses around *pf in the function call
are essential to override default precedence rules. Without them, pf would
be a function returning a pointer to an int, rather than a pointer to a func­
tion. Note that the value of a dereferenced function pointer is whatever it
was declared to be. In our case, we declared pf with the statement

int (*pf) (int);

signifying that when it is dereferenced, it will evaluate to an into

www.manaraa.com

10.3 Pointers to Functions 287

One peculiarity about dereferencing pointers to functions is that it does
not matter how many asterisks you include. For example,

(*pf) (a)

is the same as

(****pf) (a)

This odd behavior stems from two rules: first, that a function name by
itself is converted to a pointer to the function; and second, that parenthe­
ses change the order of evaluation. The parentheses cause the expression

****pf

to be evaluated before the argument list. Each time pf is dereferenced, it is
converted back to a pointer because the argument list is still not present.
Only after the compiler has exhausted all of the indirection operators does
it move on to the argument list. The presence of the argument list makes
the expression a function call.

It follows from this logic that you can dereference a pointer to a func­
tion without the indirection operator. That is,

pf(a)

should be the same as

(*pf) (a)

This is, in fact, the case according to the ANSI Standard. Older compil­
ers, however, may not support this syntax. We recommend the second
version because it is more portable and reminds us that pf is a pointer
variable.

10.3.4 A Generalized Sort Routine

A common use of pointers to functions is to provide a mechanism for per­
forming a number of similar operations without needlessly duplicating
code. Suppose, for example, that you want to sort an array of ints in both
ascending and descending order. One possibility is to write one function to
do the sort in ascending order and another to do it in descending order.
However, these two functions would be almost identical. It would be more
efficient to change only what needs to be changed without duplicating eve­
rything else.

Our bubble_sartO program from Chapter 7 is shown in Program 10-8.
It is clear that the statement that we need to change to make it a descend­
ing sort is the expression

list [jJ > list [j+1J

www.manaraa.com

288

Program
10-8

Program
10-9

If we change the "greater than" operator to "less than"

list[j) < list[j+l)

the function will sort in descending order.

/* insert p after q */

#include "v_stat.h"

void insert_after(ELEMENT *p, ELEMENT *q)
{
/* Perform sanity check on arguments.

* If P and q are the same or NULL, or if p
* already follows q, report.
*/
if (p == NULL II q == NULL II p == q II
q->next == p)
{

printf("insert_after: Bad arguments\n");
return;

p->next q->next;
q->next = Pi

10: Functions

Rather than rewriting the entire program to make this one change, we
can simply remove this expression and make it into a function called com­
pareO. Then we change the statement in bubble_sortO to

if (compare(list[j), list[j+l))

If the sort is in ascending order, compare() should return 1 when list[j]
is greater than listfi+l}; otherwise it should return O. For descending sorts,
the return value should be reversed. So we need two compare functions:

/* Compare two integers and return 1 if a is
* greater than b use for ascending sorts.
*/

int compare_ascend(int a, int b)
{

return a > bi

/* Compare two integers and return 1 if a is less
* than b use for descending sorts.
*/

int compare_descend (int a, int b)
{

return a < bi

www.manaraa.com

10.3 Pointers to Functions 289

Program
10-10

This doesn't completely solve the problem, however. We have ab­
stracted the differences between an ascending and descending sort into
two small functions, but we haven't created a mechanism to select one of
these functions dynamically . We could change the compareO call in the
bubble_sartO function to either compare_ascendO or campare_descendO,
but how can we make it choose one or the other depending on which sort
we desire?

The solution lies in pointers to functions. Specifically, we need to make
campare a pointer to a function capable of pointing to either cam­
pare_ascendO or compare_descendO. Then we can add another argument
to bubble_sartO to indicate whether the sort is to be in ascending or de­
scending order. To declare compare as a pointer to a function that returns
an int, you would write

int (*compare) (int a, int b);

Using campare as a pointer to a function, we can rewrite bubble_sartO
as follows:

#define FALSE 0
#define TRUE 1

void bubble_sort (int list [], int list_size
, int (*compare) ())

int j, temp, sorted = FALSE;

while (! sorted)
{

sorted = TRUE; /* assume list is sorted */
for (j = 0; j < list_size· 1; j++)

if «*compare) (list[j]' list(j+l))
{

)

temp:: list[j];
list(j] :: list[j+l];
list (j+ll :: temp;
sorted :: FALSE;

/* end of while loop */

This makes the program smaller and more straightforward. Note that
we do not need to declare campare_ascendO and campare_descendO be­
cause the address of one or the other is being passed directly to bub­
ble_sartO. However, this puts a burden on the calling function because it
must know the addresses of these two functions. For example, you might
call bubble_sartO as follows to sort an array in descending order:

www.manaraa.com

290

Program
10-11

Program
10-12

#include <stdlib.h>

int maine void)
{

extern void bubble_sort(int[], int, int(»;
extern int compare_ascend{), compare_descend{);
static int list[) = {I, 0, 5, 444, 332, 76 I;

#define LIST_SIZE (sizeof(list)/sizeof(list[O))

bubble_sort (list, LIST~IZE, compare_descend);
exit (0);

10: Functions

To pass a pointer to compare_descendO, we just enter the function
name without the parentheses.

Sorting is such a common task that it probably makes sense to put all
the declarations for the sort function into a header file. For example, we
could create a file called sort.h that contains the following:

#include <stdlib.h>

#define ASCEND compare_ascend
#define DESCEND compare_descend

extern void bubble_sort(int[), int, int{int,int»;
extern int compare_ascend(int,int), com­
pare_descend(int,int);

int maine void)
{

static int list[) = fl, 0, 5, 444, 332, 76 J;

#define LIST_SIZE (sizeof(list)/sizeof{list[O))

bubble_sort (list, LIST_SIZE, DESCEND);
exit (0);

This is superior to the previous version for a number of reasons. First,
it makes it easier to call bubble_sortO from other functions because all you
need to do is include the header file. Second, it hides the names and data
types of the comparison functions. If, for some reason, you want to
change the names at a later date, you need only change the header file to
broadcast the change to all source files. Without the header file, you
would need to search through every module to find all the places where
compare_ascendO and compare_descendO are declared and invoked.

It may seem that we have gone to a lot of trouble just to make bub­
ble_sortO general enough to sort in either ascending or descending order.
Wouldn't it have been easier, after all, to write two separate functions?

www.manaraa.com

10.3 Pointers to Functions 291

The answer is probably yes. In this particular instance, it is questionable
whether it is really worth generalizing bubble_sort(). We did it here more
to illustrate some important principles and techniques than to improve our
code. The runtime library, however, contains a much more generalized
sort function called qsort(), which makes more practical use of pointers to
functions. Not only can it sort objects in a user-defined order, but it can
also sort objects of any data type. See Section A.14.S.2 for more about
qsort().

10.3.5 Returning Pointers to Functions

A function may return a pointer to a function. However, you must declare
the type of the function properly. For example, the following declares a
function that returns a pointer to a function that returns an into

/* f is a function with arguments x and y,
* returning a pointer to a function returning an
* into
*/

int (*f(x, y)) (float x, float y)
{

As an example of when you might use this construct, consider the case
for which you need to sort many files of data. We already mentioned that
there are several sorting algorithms, each of which is best with only certain
types of data. A quicksort, for example, is very fast with randomly ar­
ranged data but is inefficient if the data are already largely sorted. For
data that are already in approximately sorted order, a merge sort is one of
the most efficient algorithms. If the array to be sorted is very large, on the
other hand, a heap sort might be best because it requires the minimum
amount of memory. (See Computing Algorithms by Donald Knuth for a
detailed discussion.)

Suppose, then, that we have three functions-quick_sort(),
merge_sort() , and heap_sort()-and another function, called besCsort(),
which is capable of sampling an array to determine which sort method is
most efficient for a particular set of data. We can write bescsort() so that
it returns a pointer to one of the three sort functions:

www.manaraa.com

292

Program
10-13

Program
10-14

void (*best_sort(list» ()
float list [] ;
{

extern void quicX-sort(), merge_sort(),

heap_sort () ;
/* Analyze data */
/* If quick sort is best */
return quick_sort;
/* Else if merge sort is best */
return merge_sort;
/* Else if heap sort is best */
return heap_sort;

10: Functions

To sort an array, you would invoke one of the sort functions as shown
below:

void sort_array (float list[])
{

extern void (* best_sort(» ()i

(best_sort (list » (list);

Note that the argument list appears twice-once for the besCsortO
function and once for the sorting function whose address best_sortO re­
turns.

There are, of course, other ways to perform the same functionality
without using pointers to functions. One advantage of using pointers,
however, is that we remove all decision making from the sorcarrayO
function. If we want to add new sorting functions, the only routine we
need to change is besCsortO.

You must be careful when using pointers to functions to make sure
that assignment types agree with declaration types. This can become diffi­
cult as declarations become more and more complex. In the following ex­
ample, we attempt to return a pointer to a function that returns a pointer
to a function that returns an int, when what is expected is simply a pointer
to a function that returns an into It is worth spending a few moments to

make sure that you understand this example. We discuss complex declara­
tions such as these in more detail in Section 10.6.

www.manaraa.com

10.4 Recursion

Program
10-15

293

int (*f () () /* f is a function that returns a pointer to
* a function that returns an int o
*/

extern int f1(); /* f1 is a function that returns
* an int o
*/

extern int (* f2 ()) () ; /* f2 is a
* pointer
* returns
*/

function that returns a
to a function that
an int o

int (*pf) (); /* pf is a pointer to a function
* that returns an int

pf = fl;
return f1 ;
pf = f2 ;
return £2;

*/

/* OK, types match . */
/* OK types match. */
/* Error, mismatched pointer types . */
/* Error, mismatched pointer btypes */

10.4 Recursion

Program
10-16

A recursive function is one that calls itself. For example,

#include <stdio .h>

void recurse(void)
{

static count = 1;
printf("%d\n", count);
count++ ;
recurse();

int main(void)
{

extern void recurse();
recurse () ;

www.manaraa.com

294

Program
10-17

10: Functions

What will this program do? First it prints the value of count, which is
1; then it increments count; then it calls itself. The second time through,
count equals 2. This repeats ad infinitum. The output will be

1
2
3
4
5

At some point, the computer will run out of stack memory, and the
program will abort with a runtime error. This illustrates an important
point about recursive programming: you must include a stop point or the
program will run forever (or until it runs out of memory). For example,
we can modify the previous function so that it calls itself only three times:

#include <stdio.h>

void recurse ()
{

static count 1;
if (count> 3)

return;
else
{

printf ("%d\n" I count);
count ++;
recurse() ;

int main(void
{

extern void recurse()i
recurse() ;

The condition that ends the recursion (count being greater than 3) is
called the base case. Note that the program would not end if count were
automatic rather than fixed because it would dynamically create a new
variable called count and reinitialize it to 1 with each call. This is an im­
portant aspect of recursion: for each new call, the compiler creates a whole
new set of automatic variables. Even though they have the same name,
they refer to different memory areas.

10.4.1 The Return Value in Recursive Calls

Using fixed variables is one way to control recursion. Another method is
to use the input value. The following program, for example, uses recursion
to compute the sum of integers from 1 to n.

www.manaraa.com

10.4 Recursion 295

Program int sum (int n
10-18 {

if (n <= 1)
return nj

else
return n + sum(n - l)j

It is useful to step through the function, observing what value gets re­
turned with each calL If we pass the function the value 5, the call trace
shown in Figure 10-7 occurs.

int sum (int n
{

if (n <= 1)

return nj

else
return (n + sum(n 1));

sum(5) 15

5 + sum(4) 10

4 + sum(3) 6

3 + sum(2)

2 + sum(l)

Figure 10-7: Call trace of sumO function when argument is 5.

3

1

Note that no call returns until all of its subcalls have returned. In our
example, this doesn't occur until n is less than or equal to 1, at which time
the function unwinds itself. First it returns 1, which is added to 2, return­
ing the value 3, which is added to 3 to return 6, which is added to 4 to
return 10, which is added to 5 to return 15.

Recursive programs are difficult to conceptualize at first, but they are
very powerfuL They form the basis of artificial intelligence languages such
as LISP and Prolog.

www.manaraa.com

296 10: Functions

You can always use looping constructs to get the same effect as recur­
sion, but the program is often much simpler and easier to read when im­
plemented recursively. Recursion, however, is not necessarily more
efficient because the computer must allocate additional stack space for
each call. If the recursion is deep enough, the program will run out of
stack memory and abort.

10.5 The mainO Function

Program
10-19

All C programs must contain a function called main(), which is always the
first function executed in a C program. When main() returns, the program
is done. The compiler treats the main() function like any other function,
except that at runtime the host environment is responsible for providing
two arguments. The first, usually called argc by convention, is an int that
represents the number of arguments that are present on the command line
when the program is invoked; the second, called argv by convention, is an
array of pointers to the command line arguments.

The following program uses argc and argv[] to print out the list of ar­
guments supplied to it when it is invoked:

#include <stdio.h>
#include <stdlib.h>

/* echo command line arguments */

int maine int argc, char *argv[])
{

while(--argc> 0)
printf ("\s ", *++argv) i

printf ("\n") i
exit (0);

In UNIX systems, there is a program like this called echo. So, if you
write at the command line

echo Alan Turing was a father of computing.

the system prints

Alan Turing was a father of computing.

Note that a pointer to the command itself is stored in argv{O}. This is
why we use the prefix increment operator rather than the postfix operator
to increment argv. Otherwise, the name of the command, echo, would be
printed first.

www.manaraa.com

10.6 Complex Declarations 297

Program
10-20

When you invoke a program, each command line argument must be
separated by one or more spaces. Note that the command line arguments
are always passed to main() as character strings. If the arguments are in­
tended to represent numeric data, you must explicitly convert them. For­
tunately, there are several functions in the runtime library that convert a
string into its numeric value. The function atoi(), for example, converts a
string into an int, and atof() converts a string into a float. The following
program takes two arguments and returns the first to the power of the
second:

#include <stdio . h>
#include <stdlib.h>
#include <math.h>

int maine int arqc, char *argv[)
{

float x, y;

if (argc < 3)
{

printf("Usage: power <number>\n");
printf("Yields argl to arg2 power\n");
return;

x = atof(*++argv);
y = atof(*++argv);
printf("%f\n", pow(x, y));

The powO function is part of the runtime library. We show more ex­
amples of using the command line arguments when we discuss file VO in
Chapter 12.

10.6 Complex Declarations

Declarations in C have a tendency to become complex, making it difficult
to determine exactly what is being declared. The following declaration, for
instance, declares x to be a pointer to a function returning a pointer to a
5-element array of pointers to ints:

int * (* (*x) (void» [5] ;

www.manaraa.com

298 10: Functions

One way to avoid complex declarations such as this one is to create in­
termediate typedefs, as shown below:

/* 5-element array of pointers to ints. */
typedef int *AP[5];

/* Function returning pointer to5-element array of
* pointers to ints.
*/

typedef AP *FP(void);

/* Pointer to function returning pointer to
* 5-element array of pointers to ints.
*/

FP *x

The main reason that complex declarations look so forbidding in C is
that the pointer operator is a prefix operator, whereas the array and func­
tion operators are postfix operators. As a result, the variable becomes
sandwiched between operators. To compose and decipher complex decla­
rations, you must proceed inside-out, adding asterisks to the left of the
variable name and parentheses and brackets to the right of the variable
name. It is also important to remember the following two binding and
precedence rules:

1. The array operator [] and function operator () have a higher prece­
dence than the pointer operator (*).

2. The array and function operators group from left to right, whereas
the pointer operator groups from right to left.

10.6.1 Deciphering Complex Declarations

The best strategy for deciphering a declaration is to start with the variable
name by itself and then add each part of the declaration, starting with the
operators that are closest to the variable name. In the absence of parenthe­
ses to affect binding, you would add all of the function and array opera­
tors on the right side of the variable name first (since they have higher
precedence) and then add the pointer operators on the left side. The decla­
ration

char *x[];

would be deciphered through the following steps:

1. x [] is an array.

2. *x [] is an array of pointers.

3. char *x [] is an array of pointers to chars.

Parentheses can be used to change the precedence order. For example,

int (*x []) (void) ;

www.manaraa.com

10.6 Complex Declarations 299

would be decomposed as follows:

1. x [] is an array.

2. (*x []) is an array of pointers.

3. (*x []) (void) is an array of pointers to functions.

4. int (*x[]) (void) is an array of pointers to functions returning
ints.

If this declaration had been written without the parentheses as

int *x [] (void) ;

it would have been translated as

an array of functions returning pointers to ints

which is an illegal declaration because arrays of functions are invalid.

10.6.2 Composing Complex Declarations

To compose a declaration, you perform the same process. For example, to
declare a pointer to an array of pointers to functions that return pointers
to arrays of structures with tag name S, you could use the following steps:

1. (*x) is a pointer.

2. (*x) [] is a pointer to an array.

3. (* (*x) []) is a pointer to an array of pointers.

4. (* (*x) []) (void) is a pointer to an array of pointers to functions.

S. (* (* (*x) []) (void)) is a pointer to an array of pointers to func­
tions returning pointers.

6. (*(*(*x) []) (void)) [] is a pointer to an array of pointers to
functions returning pointers to arrays.

7. struct s (*(*(*x) []) (void)) [] is a pointer to an array of
pointers to functions returning pointers to arrays of structures with
tag name S.

Note that we add parentheses for binding each time we add a new
pointer operator.

Table 10-1 lists legal and illegal declarations in C.

www.manaraa.com

300 10: Functions

Table 10-1: Legal and Illegal Declarations in C. (Function arguments are
omitted to make the table more legible.)

int i;

int *p;

int a[];

int f () ;

int **pp;

int (*pa) [] ;

int (*pf) () ;

int *ap [] ;

int aa [] [] ;

int af [] () ;

int *fp () ;

int fa () [] ;

int ff () () ;

int ***ppp;

int (**ppa) [] ;

int (**ppf) () ;

int * (*pap) [] ;

int (*paa) [] [] ;

int (*paf) [] () ;

int * (*pfp) () ;

int (*pfa) () [] ;

in t (*pf f) () () ;

int **app[];

An int

A pointer to an int

An array of ints

A function returning an int

A pointer to a pointer to an int

A pointer to an array of ints

A pointer to a function returning an int

An array of pointers to ints

An array of arrays of ints

An array of functions returning ints
(ILLEGAL)

A function returning a pointer to an int

A function returning an array of ints
(ILLEGAL)

A function returning a function returning an
int (ILLEGAL)

A pointer to a pointer to a pointer to an int

A pointer to a pointer to an array of ints

A pointer to a pointer to a function returning
an int

A pointer to an array of pointers to ints

A pointer to an array of arrays of ints

A pointer to an array of functions returning
ints (ILLEGAL)

A pointer to a function returning a pointer to
an int

A pointer to a function returning an array of
ints (ILLEGAL)

A pointer to a function returning a function
returning an int (ILLEGAL)

An array of pointers to pointers to ints

www.manaraa.com

10.7 Exercises

int (* apa []) [] ;

int (*apf []) () ;

int * aap [] [] ;

int aaa [] [] [] ;

int aaf [] [] () ;

int *afp[]();

int afa [] () [] ;

int aff [] () ();

int **fpp () ;

int (*fpa()) [];

int (*fpf())();

int*fap()[];

int faa () [] [] ;

int faf () [] ();

int *ffp() ();

10.7 Exercises

301

Table 10-1 (continued)

An array of pointers to arrays of ints

An array of pointers to functions returning
ints

An array of arrays of pointers to ints

An array of arrays of arrays of ints

An array of arrays of functions returning ints
(ILLEGAL)

An array of functions returning pointers to
ints

An array of functions returning arrays of ints
(ILLEGAL)

An array of functions returning functions
returning ints (ILLEGAL)

A function returning a pointer to a pointer to
an int

A function returning a pointer to an array of
ints

A function returning a pointer to a function
returning an int

A function returning an array of pointers to
ints (ILLEGAL)

A function returning an array of arrays of
ints (ILLEGAL)

A function returning an array of functions
returning ints (ILLEGAL)

A function returning a function returning a
pointer to an int (ILLEGAL)

1 Modify the echo program so that it prints out the arguments in capital
letters if the -c or -C switch is present when the program is executed.

www.manaraa.com

302 10: Functions

(Note that the switch should be the first argument and should not be
echoed.)

2. Enhance the program obtained from Exercise 1 so that it will work
even if the switch is not the first argument.

3. Write a recursive version of strlen{}. Is the recursive version better or
worse than the iterative version in Chapter 7? Explain your answer.

4. Write a recursive version of strcpy{}. Is the recursive version better or
worse than the iterative version in Chapter 7? Explain your answer.

5. Write a recursive function that computes the greatest common divisor
of two positive integers.

6. Write an iterative version of Exercise 5.

7. Write a recursive function that accepts a pointer to a string as its ar­
gument, turns the string into a linked list of characters, and returns a
pointer to the first character in the list.

8. Write a recursive function that counts the number of elements in a
linked list. The argument should be a pointer to the first element of
the list, and the return value should be an into

9. Write a recursive function that prints the data value of each element in
a linked list.

10. Write a recursive function that accepts two pointers, each to a linked
list, and concatenates the two lists, attaching the second list to the
first.

11. Using pointers to functions, write a general (ind{) function for linked
lists. (See Chapter 11 for an example of a specialized (indO function.)

12. Decipher the following declarations. Which are legal and which are
illegal? Why?

a) *(*xO) []

b) * (**x) []

c) (*(*(*xO) []) 0)

d) **x [] 0

e) * (x []) []

f) *(*(xO) 0)

13. Write prototypes for functions that take the following arguments:

a) Two arguments: a float and a pointer to a char.

b) Two arguments: a pointer to an array of ints and a pointer to a
function returning an unsigned long.

www.manaraa.com

10.7 Exercises 303

c) One argument: a pointer to a function returning a pointer to a
char.

d) Three Arguments: a pointer to struct of type S, a pointer to an
array of chars, and a pointer to an array of functions returning
pointers to functions returning ints.

e) Two arguments: a char and an enum declared as

enum boolean {FALSE, TRUE} i

14. Write a function to multiply two arrays and store the result into a
third array so that it might vectorize on a future ANSI compiler.

www.manaraa.com

11
The C Preprocessor

If language be not in accordance with the truth of things,
affairs cannot be carried on to success.

Confucious, Analects

You can think of the C preprocessor as a separate program that runs be­
fore the compiler, with its own simple, line-oriented grammar and syntax.
In previous chapters, we introduced two preprocessor directives-the
#define command for naming a constant and the #include command for
including additional source files. This chapter discusses both of these di­
rectives in greater detail and also describes other preprocessor directives
that have not been mentioned yet. Briefly, the preprocessor gives you the
following capabilities:

• Macro processing.

• Inclusion of additional C source files.

• "Conditional compilation," which enables you to conditionally
compile sections of C source contingent on the value of an arith­
metic expression.

All preprocessor directives begin with a pound sign (#), which must be
the first nonspace character on the line. They may appear anywhere in the
source file-before, after, or intermingled with regular C language state­
ments.

Unlike C statements. a macro command ends with a newline, not a
semicolon (see the Bug Alert on page 307). To span a macro over more
than one line, enter a backslash immediately before the newline, as in

www.manaraa.com

11.1 Macro Substitution

#define WNG_MACRO "This is a very long macro that\
spans two lines."

305

Older compilers have strict requirements concerning the format of pre­
processor commands. The pound sign must appear in column 1, and no
space is allowed between the pound sign and the preprocessor command.
ANSI C removes both of these restrictions. The only constraint imposed
by the ANSI Standard is that the pound sign must be the first nonspace or
nontab character. The following commands, for example, are supported
by ANSI C but may be illegal on older compilers.

include <stdio.h>
include <ctype.h>

11.1 Macro Substitution

A macro is a name that has an associated text string, called the macro
body. By convention, macro names that represent constants should consist
of uppercase letters only. This makes it easy to distinguish macro names
from variable names, which should be composed of lowercase characters.
In the following example, BUFF_LEN is the macro name and 512 is the
macro body.

#define BUFF_LEN (512)

When a macro name appears outside its definition it is replaced with its
macro body. The act of replacement is referred to as macro expansion. For
example, having defined BUFF _LEN, you might write

char buf[BUFF_LEN1;

During the preprocessing stage, this line of code would be translated
into

char buf [(512) 1 ;

The simplest and most common use of macros is to represent numeric
constant values. It is always bad practice to write constants in a source file
since the constant's purpose is lost. For example, consider the following:

static char in_buf[2561;
main()
{

for (a = 0; a < 256 ; a++)
in_buf[al = getchar();

The two occurrences of 256 seem innocuous enough, but if the occur­
rences are far apart in a large program, perhaps even in separate files, it

www.manaraa.com

306 11: The C Preprocessor

becomes difficult to maintain the program. If you want to change the ar­
ray size, you need to find every 256 in the program and then make sure
that it's the right 256. A better way to write the function is

#define MAX_INPUT_BUFFER_SIZE 256
static char in_buf[MAX_INPUT_BUFFER_SIZEJ;
main()
{

for (a = 0; a < MAX_INPUT_BUFFER_SIZE a++)
in_buf[aJ = getchar();

As with choosing names for variables, it is important to choose a
macro name that corresponds to its use. According to the ANSI Standard,
macro names are unique up to at least 31 characters, so you should use as
many characters within this limit as it takes to describe the macro's func­
tion.

The preceding example illustrates a simple form of a macro, in which
the macro serves as a name for a constant. There is another form of mac­
ros that is similar to a C function in that it takes arguments that can be
used in the macro body. The syntax for this type of macro is shown in
Figure 11-1.

macro
argument

Figure 11-1: Syntax of a function-like macro.

For example, you could write

#define MUL_BY_'IWO (a) «a) + (a»

Then you can use MUL_BY_TWO in your program just as you would
use a function. For example, the macro invocation

j = MUL_BY_'IWO (5);

is translated by the preprocessor into
j = «5) + (5»;

www.manaraa.com

11.1 Macro Substitution 307

Bug Alert Ending a Macro Definition With a Semicolon

One of the most common bugs is to place a semicolon at the end of a
macro definition, as in

#define SIZE 10;

The semicolon become part of the replacement string, so that a
statement like

x = SIZE;

expands to

x = 10;;

This programming error will actually go unnoticed by the compiler,
which will interpret the second semicolon as a null statement. The fol­
lowing, however will cause a compile-time parsing error:

int array [SIZE) ;

What makes this bug so difficult to find is that the line on which the
error is reported looks perfectly legal. The most pernicious example of
this type of bug occurs when the resulting syntax, after replacement, is
legal but is semantically different from what was intended. For example,

#define GOOD_CONDITION (var == 1);

while GOOD_CONDITION
foo{) ;

This expands to

while (var == 1);
foo () ;

The semicolon after (var == 1) i interpreted as a null statement and,
more important, as the body of the while loop. As a result, the call to

fooO is not part of the while body. If var equals one, you will get an
infinite loop.

Most compilers have a command line option that lets you execute
JUSt the preprocessor. This makes it much easier to find this type of bug
becau e you can inspect the source code after all of the macros have
been expanded.

The actual argument 5 is substituted for the formal argument a wher­
ever it appears in the macro body. The parentheses around a and around
the macro body are necessary to ensure correct binding when the macro is
expanded (see the Bug Alert on page 310). There is actually some justifica­
tion for this macro because it reduces a multiplication operation into an
addition operation, which is faster.

www.manaraa.com

308 11: The C Preprocessor

Note that macro arguments are not variables-they have no type, and
no storage is allocated for them. Consequently, macro arguments do not
conflict with variables that have the same name. The following, for exam­
ple, is perfectly legal:

j = MUL_BY_TWO(a-I);

which, after expansion, becomes

j = ((a-I) + (a-I));

In general, macros execute more quickly than functions because there is
none of the function overhead involved in copying arguments and main­
taining stack frames. When trying to speed up slow programs, therefore,
you should be on the lookout for small, heavily used functions that can be
implemented as macros. For example, one of our first functions in this
book (Chapter 4) was a function that converts a letter from uppercase to
lowercase. Assuming an ASCII character set, we can rewrite it as

#def ine TO_LOWER (c) ((c) - (I a I - I A I))

Converting functions to macros will have a noticeable impact on exe­
cution speed only if the function is called frequently.

11.1.1 No Type Checking for Macro Arguments

From an operational point of view, the macro MUL_BY_TWO may seem
identical to the following function:

Program int mulJ:ly_two (int a)
11-1 {

return a+a;

However, there is one significant difference-there is no type checking
for macros. In the function version of muCby_two, you must pass an inte­
gral value, and the function must return an into In the macro version, you
can substitute any type of value for a.

Suppose, for example, that f is a float variable. If you write

f = MUL_BY_'lWO (2. 5);

the preprocessor translates it into

f= ((2.5) + (2.5));

which assigns the value 5.0 to f. In contrast, if you write

f = mul_by_two(2.5);

the compiler takes one of two actions, depending on whether function
prototypes are being used. In the presence of prototyping, the compiler
converts 2.5 into an iot, giving it a value of 2; adds 2 and 2 together, and

www.manaraa.com

11.1 Macro Substitution 309

returns 4 instead of 5.0. Without function prototypes, the compiler passes
a double-precision 2.5 to the function, which interprets it as an into This
produces unpredictable results.

The lack of type checking for macro arguments can be a powerful fea­
ture if used with care. Consider the following macro, which returns the
lesser of two arguments:

#define min (a, b) «a) < (b) ? (a) : (b))

Note that this works regardless of whether a and b are integers or
floating-point values. It is extremely difficult to write an equivalent func­
tion that works for all data types.

Another difference between macros and functions is that the preproces­
sor checks to make sure that the number of arguments in the definition is
the same as the number of arguments in the invocation. The C compiler
does this type of checking for functions only if you use the prototyping
syntax in the function declaration. For example, the statement

MUL_BY_TWO (x, y);

would produce a compile-time error. The analogous statement

mul_by_two (x, y);

would produce a compile-time error only if the function is declared with a
prototype. Otherwise, this statement would compile without errors but
would produce unpredictable results when executed.

Bug Alert Using = to Define a Macro
A common mistake made in defining macros is to use the assignment
operator as if you were initializing a variable. Instead of writing

#define MAX 100

you write

#define MAX = 100

This type of mistake can lead to obscure bugs. For example, the ex­
pression

for (j=MAX, j > 0; j- -)

would expand to

for (j= 100; j > 0, j--)

Suddenly the assignment is turned into a relational expression. The
expression is legal, so the compiler will not complain, making the error
difficult to track down.

www.manaraa.com

310

Bug Alert

11: The C Preprocessor

Space Between Left Parenthesis and Macro Name

Note in Figure 11-1 that the left parenthesis must come immediately
after the macro name, without any intervening spaces. Insertion of a
space usually results in a compile-time error, but occasionally obscure
bugs can result. Consider the following macro:

#define n~~lus_f(a) . (a) + f

The expression

j = n~~lus_f (x);

expandsro

j = - (xl + f;

But watch what happens if we accidentally insert a space between
the left parenthesis and the macro name in the definition:

#define n~~lus_f (a) (- (a) + f)

Now, the expression expands to

j = (a) • (a) + f (xl i

If a is a variable name and f is a function name, this will look like a
perfectly legal expression to the compiler.

11.1.2 Removing a Macro Definition

Once defined, a macro name retains its meaning until the end of the source
file, or until it is explicitly removed with an #undef directive. The most
typical use of #undef is to remove a definition so you can redefine it (see
Section 11.2.1).

It is illegal to redefine a macro without an intervening #undef state­
ment, unless the two definitions are the same. This is a useful rule because
it enables you to define the same macro in different header files. If you
include multiple header files (and hence, multiple definitions of the same
macro), your compiler will complain only if the definitions conflict.

11.1.3 Using a Macro Name in Its Own Definition

Most older C compilers don't allow you to use a macro name in the body
of its own definition. The following definition, for example, would fail
because the compiler would try to expand sqrt in the body:

#define sqrt (x) ((x < 0) ? sqrt ('x) : sqrt (x))

The ANSI Standard supports this syntax but states that if a macro
name appears in its own definition, it will not be expanded. This avoids

www.manaraa.com

11.1 Macro Substitution 311

Bug Alert

the problem of infinite expansion. According to ANSI rules, therefore, the
statement

y = sqrt (5);

would expand to

y = ((5 < 0 ? sqrt (- 5) : sqrt (5));

As a result, the sqrt() function would be called with 5 as the argument.
Note that using a macro name in its own body makes sense only if there is
a function with the same name.

Side Effects in Macro Arguments

A potential hazard of macros involves side-effect operators in argument
expressions. Suppose, for instance, that we invoke the min macro as
follows:

a = minI b++, e);

The preprocessor translates this into

a = «b++) < (e) ? (b++) : e);

If b is less than c, it gets incremented twice, obviously not what is in­
tended. To be on the safe side, you should never use a side-effect opera­
tor in a macro invocation. Side-effect operators include the increment
and decrement operators, the assignment operators, and function invo­
cations.

11.1.4 Macros vs. Functions

Macros and functions are similar in that they both enable a set of opera­
tions to be represented by a single name. Sometimes it is difficult to decide
whether to implement an operation as a macro or as a function. The fol­
lowing lists summarize the advantages and disadvantages of macros com­
pared to functions.

11.1.4.1 Advantages

1. Macros are usually faster than functions because they avoid the
function call overhead.

2. The number of macro arguments is checked to match the defini­
tion. The C compiler also does this for functions if you use the new
ANSI prototyping syntax.

3. No type restriction is placed on arguments so that one macro may
serve for several data types.

www.manaraa.com

312 11: The C Preprocessor

11.1.4.2 Disadvantages

1. Macro arguments are reevaluated at each mention in the macro
body, which can lead to unexpected behavior if an argument con­
tains side effects (see the Bug Alert on page 311).

2. Function bodies are compiled once so that multiple calls to the
same function can share the same code without repeating it each
time. Macros, on the other hand, are expanded each time they ap­
pear in a program. As a result, a program with many large macros
may be longer than a program that uses functions in place of the
macros.

3. Although macros check the number of arguments, they don't check
the argument types. Function prototypes check both the number of
arguments and the argument types.

4. It is more difficult to debug programs that contain macros because
the source code goes through an additional layer of translation,
making the object code even further removed from the source
code.

11.1.5 Built-In Macros

The ANSI Standard defines five macro names that are built into the pre­
processor. Each name begins and ends with two underscore characters.
You may not redefine or #undef these macros. (These macros may not be
supported by older compilers.)

LINE Expands to the source file line number on which it is in-
voked.

FILE Expands to the name of the file in which it is invoked.

_ TIME_ Expands to the time of program compilation.

DA TE Expands to the date of program compilation.

STDC Expands to the constant 1 if the compiler conforms to the
ANSI Standard.

The _LINE_ and _FILE_ macros are available in most older com­
pilers. The _TIME_, _DATE_, and _STDC_ macros are more re­
cent ANSI additions to the C preprocessor.

The _LINE_ and _FILE_ macros are valuable diagnostic tools.
Suppose, for example, that you want a check facility that compares two
expressions for equality and, if they are unequal, calls an error reporting
function with the source filename and the line number of the check failure
(Program 11-2.

www.manaraa.com

11.1 Macro Substitution 313

Program
11-2

#define CHECK (a, bl \
if «a) != (b» \
fail (a, b, --YILE __ , ~I~)

void fail(int a, int b, char *file, int line I
{

printf("Check failed in file %s at line %d:\
qot %d, expected %d\n", file, line, a, b);

At various points in a program, you can check to make sure that a
variable x equals zero by including the following diagnostic:

CHECK (x, 0) i

The _DATE_ and _TIME_ macros are useful for recording the
date and time a file was last compiled. For instance,

Program void print_version ()
11-3 {

printf("This utility compiled on %5 at %s\n",
__ DATE __ , __ TI~);

The _STDC_ macro, if it expands to 1, signifies that the compiler
conforms to the ANSI Standard. If it expands to any other value, or if it is
not defined, you should assume that the compiler does not conform to the
ANSI Standard. Section 11.2 illustrates a common use of this macro.

11.1.6 String Producer

One of the limitations of the preprocessor described in the K&R standard
is that there is no way to treat a series of characters as both a string and
an expression. With an ANSI-conforming compiler, you can obtain this
behavior by using the preprocessor token #, which forces the preprocessor
to surround the next replacement argument with double quotes. For ex­
ample,

#define str(s) #s

The statement

printf(str(This is a string))i

expands to

printf ("This is a string") i

Consider the following ASSERT macro, which treats its argument as
both an expression and a string:

www.manaraa.com

314

Bug Alert

#define ASSERT(b) if (!b) \
{\

11: The C Preprocessor

printf("The following \
condition failed: %s\n", #b); \

exit (1); \

Now you can invoke ASSERT as follows:

ASSERT (array-ptr < array_start + array_size);

If the expression is false (that is, if array-ptr points to an address be­
yond the array), the program will print the following message and then
exit:

The following condition failed:
array-ptr < array_start + array_size

Note that since preprocessor commands are terminated by newlines,
we use backslashes to continue the definition of ASSERT onto more than
one line.

Binding of Macro Arguments

A potential problem with macros is that argument expressions that are
not carefully parenthesized can produce erroneous results due to opera­
tor precedence and binding. Consider the following macro:

#def ine square (a) a * a

square has the advantage that it will work regardless of the argument
data types. However, watch what happens when we pass it an arithme­
tic expression:

j = 2 * square(3 + 4);

expands to

j = 2 * 3 + 4 * 3 + 4;

Because of operator precedence, the compiler interprets this expres­
sion as

j = (2 * 3) + (4 * 3) + 4;

which assigns the value of 22 to j, instead of 98. To avoid this problem,
you should always enclose the macro body and macro arguments in
parentheses:

#define squarer a) «a) * (a))

Now, the macro invocation expands to

j = 2 * «3 + 4) * (3 + 4);

which produces the correct result.

www.manaraa.com

11.1 Macro Substitution 315

11.1.7 Token Pasting

The ANSI Standard defines a new preprocessor operator (##) that pastes
two tokens. For example,

#define FILENAME (extension) test_ ## extension

The sequence

FILENAME(bak)

expands to

test_bak

Note that you cannot obtain this behavior without using the paste op­
erator. For example,

#define FILENAME (extension) test_extension

does not work because test3xtension is considered to be a single identifier
and macro expansion does not occur within identifiers.

Here's another example using the token pasting operator:

#define READ(type) (file_##type == NULL? \
open_##type##_file(), read __ ##type() : \
read_##type())

This macro is useful for reading elements from files. If the file is not al­
ready opened (i.e., file_##type == NULL), the macro will open and then
invoke the read_##type() function; otherwise it invokes read_##type with­
out opening the file. For example,

s = READ(player);

expands to

s = (file-player == NULL ? open __ FILE--player(),
read-player () : read-player());

This is equivalent to

if (file-p1ayer == NULL)
{

open __ FILE--player();
s = read-p1ayer;

else
s = read-p1ayer;

www.manaraa.com

316 11 : The C Preprocessor

11.2 Conditional Compilation

The preprocessor enables you to screen out portions of source code that
you don't want compiled. This is done through a set of preprocessor direc­
tives that are similar to the if and else statements in the C language. The
preprocessor versions are #if, #else, #elif, and #endif. The syntax for using
these directives is shown in Figure 11-2.

C source code

conditional
expression

conditional
expression

Figure 11-2: Syntax of conditional compilation directives.

www.manaraa.com

11.2 Conditional Compilation

For example,

#if x == 1
#undef x
#define x 0

#elif x == 2
#under x
#define x 3

#else
#define y 4

#endif

317

The conditional expression in an #if or #elif directive must be a con­
stant expression, so x must be a macro. If it expands to 1, it is redefined to
expand to O. If it expands to 2, it is redefined to expand to 3. Otherwise, x
remains unchanged, but a new macro named y is defined. This example
illustrates a number of differences between the preprocessor conditional
statements and the C language conditional statements:

• The conditional expression in an #if or #elif statement need not be
enclosed in parentheses. (Parentheses may optionally be included.)

• The #elif directive, which is not supported by K&R, is analogous
to the C language else if construct.

• Blocks of statements under the control of a conditional preproces­
sor directive are not enclosed in braces. Instead, they are bounded
by an #elif, #else, or #endif statement.

• Every #if block may contain any number of #elif blocks, but no
more than one #else block, which should be the last one.

• Every #if block must end with an #endif directive.

In addition to these differences, there are other rules governing condi­
tional preprocessor directives that are not apparent from our example:

• The conditional expression following an #if or #elif statement must
be a constant expression. Normal arithmetic conversions take
place. (According to the ANSI Standard, all constants in a condi­
tional expression are converted to long into In most previous ver­
sions of C, constants in conditional expressions obey the same type
rules as other constants.)

• Any macros in the conditional expression are expanded before the
expression is evaluated.

• If a conditional expression contains a name that has not been de­
fined, it is replaced by the constant zero. For example, the sequence

#undef x
#if x

expands to

#if 0

www.manaraa.com

318

Program
11 -4

11 : The C Preprocessor

(This is how undefined names are handled in the ANSI Standard.
Some compilers, however, report an error if you use an undefined
name.)

• Conditional preprocessor directives may be nested with the same
semantics as nested if statements.

In our examples so far, the statements within the conditional blocks are
themselves preprocessor statements, but this is not a restriction. They
could just as easily be C language statements. In fact, conditional compila­
tion is particularly useful during the debugging stage of program develop­
ment because you can turn sections of code on or off by changing the
value of a macro. The following snippet is from the C interpreter program
included in the accompanying diskette:

#if DEBUG
if (exp_debug)
(

printf("lhs = ");
print_value (result)i
printf(" rhs = ");
print_value (&rvalue)i
printf ("\n");

}
#endif

If the macro DEBUG is a nonzero value, the if statement and printf()
calls will be compiled. If DEBUG is zero, these statements will be ignored
as if they were a comment. If DEBUG is not defined. it is the same as if it
were defined to expand to zero.

Most compilers have a command line option that lets you define mac­
ros before compilation begins. Most C compilers that run under UNIX
and MS-DOS, for example, contain a -D option for defining macros. To
receive debug information, you would define the macro DEBUG to be
some nonzero value:

cc -DDEBUG=l test

Note that the #if and #endif directives control whether the enclosed C
statements are compiled, not necessarily whether they are executed. In the
above example, the printf() calls are executed only if the exp_debug vari­
able has a nonzero value. This double-layer approach enables you to in­
clude the diagnostic statements in the executable program but still decide
each time you run the program whether you want them executed. If for
the final version you need to reduce the size of the executable program,
you can compile it with DEBUG set to zero.

www.manaraa.com

11.2 Conditional Compilation 319

Program
11-5

Another common use of the conditional compilation mechanism is to
choose between the old function declaration syntax and the ANSI proto­
typing syntax:

#if (_STDC_)
extern int foot char a, float b);
extern char *goo(char *string);

#else
extern int foo();
extern char *qoO()i

#endif

If the compiler conforms to the ANSI Standard (_STDC_ equals 1),
we use the prototyping syntax to declare the types of each argument. Oth­
erwise, we use the old function declaration syntax.

11.2.1 Testing Macro Existence

The #if and #elif directives enable you to compile code conditionally based
on the value of an arithmetic expression. You can also specify conditional
compilation based on the existence or nonexistence of a macro using
#ifdef, #ifndef, and #endif. For example,

#ifdef TEST
printf("This is a test.\n"):

#else
printf ("This is not a test. \n");

#endif

If the macro TEST is defined, the first printfO call will be compiled. If
TEST is not a defined macro, the second printfO call will be compiled.
Note that it doesn't matter what TEST expands to, only whether it exists
or not. As with #if and #elif, an #ifdef and #ifndef block must be termi­
nated by an #endif statement.

Another way to write the previous example is to use the preprocessor
defined operator (an ANSI extension):

or

#if defined TEST

#if defined (TEST)

The parentheses around the macro name are optional. By definition,

#if defined macro_name

is equivalent to

#ifdef macro_name

www.manaraa.com

320 11: The C Preprocessor

And the directive

#if !defined macro_name

is equivalent to

#ifndef macro_name

In most instances, you can use #if instead of #ifdef and #ifndef, because
the macro name expands to zero if it is not defined. The one exception
where you need to use #ifdef or #i£ndef is when the macro is defined to
zero. For example, you may want to define the macro FALSE to expand
to zero. If you use an #if directive to test whether FALSE is defined,
FALSE will be redefined even if it is already defined to expand to zero.
More important, it won't be redefined if it is defined to something other
than zero.

#if !FALSE
define FALSE 0
#endif

You can avoid both of these problems by using #ifndef.

#ifndef FALSE
define FALSE 0
#elif FALSE
undef FALSE
define FALSE 0
#endif

11.3 Include Facility

You have already been introduced to the #include directive as a means for
inserting source code into a file. This section describes #include in more
detail.

The #include command has two forms:

#include <filename>

or

include "filename"

If the filename is surrounded by angle brackets, the preprocessor looks
in a list of implementation-defined places for the file. (In UNIX systems,
standard include files are often located in the directory lusrlinclude.) If the
file name is surrounded by double quotes, the preprocessor looks for the
file according to the file specification rules of the operating system. If the
preprocessor can't find the file there, it searches for the file as if it had
been enclosed in angle brackets.

The #include command enables you to create common definition files,
called header files, to be shared by several source files. Header files tradi-

www.manaraa.com

11.4 Line Control 321

tionally have a .h extension and contain data structure definitions, macro
definitions, and any global data necessary for modules to communicate
with each other. You should use header files to place common information
in one place instead of duplicating it in each source module. This greatly
simplifies the initial programming as well as the subsequent maintenance
and modification. It also ensures that programmers working on different
parts of a project do not use the same name in conflicting ways.

The C extern declaration is tailored to this sharing of a common defini­
tion file because you can redeclare the same extern variable any number of
times, as long as the data type remains the same. Note, however, that most
compilers do not allow you to initialize a global variable more than once.
As a result, extern declarations that appear in an include file should not
contain an initializer. Instead, you should choose a single file in which to
enter the initialization. It is a good idea to enter a comment in the header
file stating where the global variable is initialized and what the initial
value is. For example, the header file might contain the declaration

/* Initialized to 1 in start.c */
extern int page_num;

In the source file start.c, you would write

int page_num = 1;

Operating systems such as UNIX supply many header files that de­
scribe structures internal to the operating system. The C runtime library
also includes a number of header files that must be included in order to
invoke associated functions. See Appendix A for more information about
runtime library header files.

11.4 Line Control

The ANSI Standard defines a preprocessor directive called #line that al­
lows you to change the compiler's knowledge of the current line number
of the source file and the name of the source file.

filename

Figure 11-3: Syntax of a #line directive.

The syntax for #line is shown in Figure 11-3. The line number that you
enter represents the line number of the next line in the source file. Most

www.manaraa.com

322

Program
11-6

11 : The C Preprocessor

compilers use this number when they report an error and source-level de­
buggers make use of line numbers. The following example illustrates the
behavior of #line.

/* Example of the #line preprocessor directive */
#include <stdio.h>
#include <stdlib.h>

int maine void I
{

printf("Current line: %d\nFilename: %s\n\n",
LlNE, _FILE_I;

#line 100
printf("Current line: %d\nFilename: %s\n\n",

LlNE , _FILE_I;
#line 200 "new name"

printf ("Current line: %d\nFilename: %s\n\n",
LlNE, _FILE_);

exit (0);

Assuming that the source file for this program is called line_example.c,
execution produces

Current, line: 7
Filename: line_exarnple.c
Current line: 101
Filename: line_exarnple.c
Current line : 201
Filename: new_name

The preprocessor evaluates _LINE_ before deleting comments.
However, if an #include directive appears before an occurrence of
LINE, the preprocessor inserts the include file before computing the
value of _LINE_

The #line feature is particularly useful for programs that produce C
source text. For instance, yacc (which stands for Yet Another Compiler
Compiler) is a UNIX utility that facilitates building compilers. yacc reads
files written in the yacc language and produces a file written in the C lan­
guage, which can then be compiled by a C compiler. A problem arises,
however, if the C compiler encounters an error in the yacc-produced C
file. You want to know which line in the original yacc file is causing the
error, but the C compiler will report the error-producing line in the C text
file. To solve this problem, yacc writes #line directives in the C source file
so that the compiler is fooled into reporting errors based on the yacc line
numbers rather than the C line numbers.

www.manaraa.com

11.5 Exercises 323

11.4.1 The #error Directive

The ANSI #error directive enables you to report errors during the preproc­
essing stage of compilation. Whatever text follows the #error command
will be sent to the standard error device (usually your terminal). Typically,
it is used to check for illegal conditional compilation values. For example,

#if INTSIZE < 16
error INTSIZE too small
#endif

If you attempt to compile a file with

cc -DINTSIZE=8 test.c

you will receive the error message

INTSIZE too small

11.4.2 The #pragma Directive

The ANSI #pragma directive performs implementation-specific tasks.
Every compiler is free to support special names that have implementa­
tion-defined behavior when preceded by #pragma. For instance, a com­
piler might support the names NO_SIDE_EFFECTS and
END_NO_SIDE_EFFECTS, which inform the compiler whether it needs
to worry about side effects for a certain block of statements. This informa­
tion can help the compiler generate better-optimized machine code. In the
following snippet, for instance, the compiler is free to assign 2 to *p before
the call to {nO becaure the programmer has guaranteed that (nO will not
produce side effects that might affect *p:

#pragma NO_SIDE_EFFECTS
a = fn(x, 2);
*p = 2;

#pragma END_NO_SIDE_EFFECTS

Check the documentation for your compiler to see if it supports any
special #pragma directives.

11.5 Exercises

1. Give the translation of the following macros:

a) #define BUFFSIZE 1024
int buf[BUFFSIZE+1];

b) #define a (b) b+1
a (1) + 1

www.manaraa.com

324

c) #define a (b) b+1
a (1) + 1

d) #define cos (x) *cos (x)
cos (x) + cos (cos (y) + 1)

e) #define min (x,y) ((x) >=(y) ?x:y)
min (l,min (a,b))

f) #define DO_BIG_BUFFERS
#define IO_FLAGS_Ox5C
#define IO_NO_ODD_BOUND 4
#define DO_BIG_BUFFERS

11 : The C Preprocessor

#if defined (BIG_BUFFERS) && (IO_FLAGS & \
IOJTO_ODD_BOUND)

input_stream = big_buf_init();
stream_align (input_stream);

#else
input_stream = small_buff_init ();

#endif
2. Write macros to do the following:

a) Set the nth bit of char array buf to val:
SET~IT(buf, n, val)

b) Get the value of the nth bit of char array buf:
GET_BIT (buf, n)

3. Write a macro called MYGETc(fd), where fd is type
FILE_DESCRIPTOR (see below). The macro will read a character
from a buffer. If the buffer is empty, the macro must use

read (int fi1eChanne1, char *buf, int len)

to fill the buffer. You can assume that

1. open() has been called on fd
2. fd->fileChannel is valid

3. fd->currentBufPointer == O.

Use the definitions in the following header file.

/* myio.h */
#define FlLE_BUF_LEN (512)
typedef s truct
{

int fileChanne1;
char *buf;
char *currentBufPointer;

FILE_DESCRIPTOR;

4. Write a macro called MYPUTC(fd, c) to write to the buffer in file de­
scriptor fd. If the buffer is full, use

write (int fileChane1, char buf, int len)

to write it. Use "myio.h" and the same assumptions about fd as in
Exercise 3.

www.manaraa.com

11.5 Exercises 325

5. Write a macro ABS(x) that expands to the absolute value of its argu­
ment x. Why might it be more efficient than a function call? Why
might it be less efficient?

www.manaraa.com

12
Input and Output

In good writing, words become one with things.
Emerson, Journals

File input and output (110) is one of the trickiest aspects of any program­
ming language because it is integrated so closely with the operating sys­
tem. Operating systems vary greatly in the way they allow access to data
in files and devices. This variation makes it extremely difficult to design
110 capabilities that are portable from one implementation of a program­
ming language to another.

The C language performs 110 through a large set of runtime routines.
Many of these functions were first described in the K&R standard. Others
are derived from the UNIX 110 library. Historically, there has always been
some overlap between these two libraries, although the "C library" deals
mostly with buffered 110 and the UNIX library performs unbuffered 110.

The ANSI Committee blended these two libraries, preserving some
functions, deleting some functions, and modifying others. The most sig­
nificant change is the elimination of unbuffered 110 functions. In the ANSI
library, all 110 functions are buffered, although you have the capability to

change the buffer size. In addition, the ANSI 110 functions make a distinc­
tion between accessing files in binary mode and accessing them in text
mode. In UNIX environments, this distinction is moot because the UNIX
operating system treats binary and text files the same. In some other oper­
ating systems, the distinction is extremely important.

The Standard C library contains nearly forty functions that perform
110 operations. They can be divided into several groups, as shown in Table
12-3 through Table 12-6 at the end of this chapter. Appendix A describes

www.manaraa.com

12.1 Streams 327

each function detail. The remainder of this chapter provides more general
information. We use the ANSI Standard as the basis of our discussion.

12.1 Streams

C makes no distinction between devices such as a terminal or tape drive
and logical files located on a disk. In all cases, 110 is performed through
streams that are associated with the files or devices. A stream consists of
an ordered series of bytes. You can think of it as a one-dimensional array
of characters, as shown in Figure 12-1. Reading and writing to a file or
device involves reading data from the stream or writing data onto the
stream.

C Program

File

Figure 12-1: C programs access data in files through one-dimensional arrays of
charaders called streams.

To perform 110 operations, you must associate a stream with a file or
device. You do this by declaring a pointer to a structure type called FILE.
The FILE structure, which is define in the stdio.h header file, contains sev­
eral fields to hold information such as the file's name, its access mode, and
a pointer to the next character in the stream. These fields are assigned val­
ues when you open the stream and access it, but they are implementation
dependent, so they vary from one system to another.

The FILE structures provide the operating system with bookkeeping
information, but your only means of access to the stream is the pointer to
the FILE structure (called a file pointer). The file pointer, which you must
declare in your program, holds the stream identifier returned by the

www.manaraa.com

328 12: Input and Output

fopenO function. You use the file pointer to read from, write to, or close
the stream. A program may have more than one stream open simultane­
ously, although each implementation imposes a limit on the number of
concurrent streams.

One of the fields in each FILE structure is a file position indicator that
points to the byte where the next character will be read from or written to.
As you read from and write to the file, the operating system adjusts the file
position indicator to point to the next byte. Although you can't directly
access the file position indicator (at least not in a portable fashion), you
can fetch and change its value through library functions, thus enabling you
to access a stream in nonserial order.

Do not confuse the file pointer with the file position indicator. The file
pointer identifies an open stream connected to a file or device. The file
position indicator refers to a specific byte position within a stream.

12.1.1 Standard Streams

There are three streams that are automatically opened for every program.
Their names are stdin, stdout, and stderr. Usually, these streams point to
your terminal, but many operating systems permit you to redirect them.
For example, you might want error messages written to a file instead of
the terminal.

The 110 functions already introduced, printfO and scanfO for example,
use these default streams. printfO writes to stdout, and scanfO reads from
stdin. You could use these functions to perform 110 to files by making
stdin and stdout point to files (with the freopenO function). An easier
method, however, is to use the equivalent functions, fprintfO and fscanfO,
which enable you to specify a particular stream.

12.1.2 Text and Binary Formats

Data can be accessed in one of two formats: text or binary.
(Implementations may support additional formats, but they are not re­
quired by the ANSI Standard to do so.) A text stream consists of a series
of lines, and each line is terminated by a newline character. However, op­
erating systems may have other ways of storing lines on disks and tapes,
so each line in a text file does not necessarily end in a newline character.
Many IBM systems, for instance, keep track of text lines through an index
of pointers to the beginnings of each line. In this scheme, the files stored
on disk or tape may not contain newline characters even though they are
logically composed of lines. When these lines are read into memory in text
mode, however, the runtime functions automatically insert newlines into
the text stream. Likewise, when lines are written from a text stream to a
mass storage device, the 110 functions may replace newlines in the stream
with implementation-defined characters that get written to the 1/0 device.

www.manaraa.com

12.2 Buffering 329

In this way, C text streams have a consistent appearance from one envi­
ronment to another, even though the format of the data on the mass stor­
age devices may vary.

Despite these rules, which promote portability to some extent, you
should be extremely careful when performing textual I/O. Programs that
work on one system may not work exactly the same way on another. In
particular, the rules described above hold true only for printable charac­
ters (including tabs, form feeds, and newlines.) If control characters appear
in a text stream, they are interpreted in an implementation-defined man­
ner.

In binary format, the compiler performs no interpretation of bytes. It
simply reads and writes bits exactly as they appear. Binary streams are
used primarily for nontextual data, where there is no line structure and it
is important to preserve the exact contents of the file. If you are more in­
terested in preserving the line structure of a file, you should use a text
stream. The three standard streams, for example, are all opened in text
mode.

As we mentioned earlier, in UNIX environments the distinction be­
tween text and binary modes is moot because UNIX treats all data as bi­
nary data. However, even if you are programming in a UNIX
environment, you should be thinking about potential difficulties in porting
your program to other systems.

12.2 Buffering

Compared to memory, secondary storage devices such as disk drives and
tape drives are extremely slow. For most programs that involve I/O, the
time taken to access these devices overshadows the time the CPU takes to
perform operations. It is extremely important, therefore, to reduce the
number of physical read and write operations as much as possible. Buff­
ering is the simplest way to do this.

A buffer is an area where data is temporarily stored before being sent
to its ultimate destination. Buffering provides more efficient data transfer
because it enables the operating system to minimize accesses to I/O de­
VIces.

All operating systems use buffers to read from and write to I/O devices.
That is, the operating system accesses I/O devices only in fixed-size
chunks, called blocks. Typically, a block is 512 or 1024 bytes. This means
that even if you want to read only one character from a file, the operating
system reads the entire block on which the character is located. For a sin­
gle read operation, this isn't very efficient, but suppose you want to read
1000 characters from a file. If I/O were unbuffered, the system would per­
form 1000 disk seek and read operations. With buffered I/O, on the other

www.manaraa.com

330 12: Input and Output

hand, the system reads an entire block into memory and then fetches each
character from memory when necessary. This saves 999110 operations.

The C runtime library contains an additional layer of buffering, which
comes in two forms: line buffering and block buffering.

In line buffering, the system stores characters until a newline character
is encountered, or until the buffer is filled, and then sends the entire line to
the operating system to be processed. This is what happens, for example,
when you read data from the terminal. The data are saved in a buffer until
you enter a newline character. At that point, the entire line is sent to the
program.

In block buffering, the system stores characters until a block is filled
and then passes the entire block to the operating system. The size of a
block is defined by the operating system but is typically 512 or 1024
bytes. By default, all 110 streams that point to a file are block buffered.
Streams that point to your terminal (stdin and stdout) are either line buff­
ered or unbuffered, depending on the implementation.

The C library standard 110 package includes a buffer manager that
keeps buffers in memory as long as possible. So if you access the same por­
tion of a stream more than once, there is a good chance that the system
can avoid accessing the I/O device multiple times. Note, however, that this
can create problems if the file is being shared by more than one process.
For interprocess synchronization, you need to write your own assembly
language functions or use system functions supplied with the operating
system.

In both line buffering and block buffering, you can explicitly direct the
system to flush the buffer at any time (with the fflush() function), sending
whatever data are in the buffer to their destination.

Although line buffering and block buffering are more efficient than
processing each character individually, they are unsatisfactory if you want
each character to be processed as soon as it is input or output. For exam­
ple, you may want to process characters as they are typed rather than
waiting for a newline to be entered. C allows you to tune the buffering
mechanism by changing the default size of the buffer. In most systems, you
can set the size to zero to turn buffering off entirely. Section 12.7 describes
unbuffered 110 in greater detail.

12.3 The <stdio. h> Header File

To use any of the 110 functions, you must include the stdio.h header file.
This file contains:

• Prototype declarations for all the 110 functions.

• Declaration of the FILE structure.

• Several useful macro constants, including stdin, stdout, and stderr.

www.manaraa.com

12.3 The <stdio. h> Header File 331

Another important macro is EOF, which is the value returned by many
functions when the system reaches the end-of-file marker. Historically,
stdio.h is also where NULL, the name for a null pointer, is defined. The
ANSI Committee, however, moved the definition of NULL to a new
header file called stddefh. To use NULL, therefore, you must either in­
clude stddefh or define NULL yourself:

#ifndef NULL
#define NULL (void *) 0

#endif

12.3.1 Error Handling

Each I/O function returns a special value if an error occurs. The error
value, however, varies from one function to another. Some functions re­
turn zero for an error, others return a nonzero value, and some return
EOF. Read the function description in Appendix A to see what value it
returns for an error.

There are also two members of the FILE structure that record whether
an error or end-of-file has occurred for each open stream. End-of-file con­
ditions are represented differently on different systems. Some systems have
a special character that denotes the end of a file, whereas others use some
method of counting characters to determine when the end of a file has
been reached. In either case, an attempt to read data past the end-of-file
marker will cause an end-of-file condition. A stream's end-of-file and error
flags can be checked via the feof() and ferrorO functions, respectively. In a
few instances, an I/O function returns the same value for an end-of-file
condition as it does for an error condition. In these cases, you need to
check one of the flags to see which event actually occurred.

The following function checks the error and end-of-file flags for a
specified stream and returns one of four values based on the results. The
clearerrO function sets both flags equal to zero. You must explicitly reset
the flags with clearerrO-they are not automatically reset when you read
them, nor are they automatically reset to zero by the next I/O call. They
are initialized to zero when the stream is opened, but the only way to reset
them to zero is with clearerr{}.

www.manaraa.com

332

Program
12-1

/* Return stream status flags.
* TwO flags are possible: EOF and ERROR
*/

#include <stdio.h>
#define EOF-fLAG 1
#define ERR-FLAG 2

char stre~stat(FILE *fp)
{

char stat = 0,
if (ferror(fp))

stat 1= ERR-FLAG,
if (feof(fp))

stat 1= EOF_FLAG;
clearerr (fp) ;
return stat;

12.3.2 The ermo Variable

12: Input and Output

In addition to the end-of-file and error flags, there is a global variable
called errna that is used by a few of the 110 functions to record errors. A
UNIX hand-me-down, errno is an integer variable declared in the errno.h
header file. The errno variable is primarily used for math functions; very
few of the 110 functions make use of errno. For more information about
errna, see Appendix A.

12.4 Opening and Closing a File

Before you can read from or write to a file, you must open it with the
fopenO function. fopenO takes two arguments-the first is the file name
and the second is the access mode. There are two sets of access modes­
one for text streams and one for binary streams. The text stream modes
are shown in Table 12-1. The binary modes are exactly the same, except
that they have a b appended to the mode name. To open a binary file with
read access, for exam pie, you would use "rb".

www.manaraa.com

12.4 Opening and Closing a File 333

Program
12-2

Table 12-1: fopenO Text Modes.

"r" Open an existing text file for reading. Reading occurs at the
beginning of the file.

"w" Create a new text file for writing. If the file already exists, it
will be truncated to zero length. The file position indicator is
initially set to the beginning of the file.

"a" Open an existing text file in append mode. You can write only
at the end-of-file position. Even if you explicitly move the file
position indicator, writing still occurs at the end-of-file.

"r+ " Open an existing text file for reading and writing. The file posi­
tion indicator is initially set to the beginning of the file.

"w+" Create a new text file for reading and writing. If the file already
exists, it will be truncated to zero length.

"a+" Open an existing file or create a new one in append mode. You
can read data anywhere in the file, but you can write data only
at the end-of-file marker.

Table 12-2 summarizes the properties of the (openO modes.
fopenO returns a file pointer that you can use to access the file later in

the program. The following function opens a text file called test with read
access.

#include <stddef.h>
#include <stdio.h>

FILE *ope~test() /* Returns a pointer to opened FILE */
{

FILE *fp;

fp = fopen ("test". "r");
if (fp == NULL)

fprintf(stderr, "Error opening file test\n");
return fp;

Note how the file pointer fp is declared as a pointer to FILE. The
fopenO function returns a null pointer (NULL) if an error occurs. If suc­
cessful, fopenO returns a nonzero file pointer. The fprintf() function is ex­
actly like printf(), except that it takes an extra argument to indicate to
which stream the output should be sent. In this case, we send the message
to the standard 110 stream stderr. By default, this stream usually points to
your terminal.

www.manaraa.com

334

Program
12-3

12: Input and Output

Table 12-2: File and Stream Properties of fopenO Modes.

r w a r+ w+ a+

File must exist before open * *

Old file truncated to zero length * .~

Stream can be read .~ * * *

Stream can be written * * .~ .~ *

Stream can be written only at end * *

The open_test() function is written somewhat more verbosely than is
usual. Typically, the error test is combined with the file pointer assign­
ment:

if «fp = fopen("test", "r")) == NULL)
fprintf(stderr, "Error opening file test\n");

The openjest() function is a little too specific to be useful because it
can open only one file, called test, and only with read-only access. A more
useful function, shown below, can open any file with any mode.

#include <stddef.h>
#include <stdio.h>

FILE *open_file{ char *filec.-na.me, char *access_model
{

FILE *fp;

if «fp = fopen (file_name, access_mode l) == NULL)
fprintf(stderr, "Error opening file 90s with access"

"mode %s\n", file_name, access_mode) I
return fp;

Our openJile() function is essentially the same as (open(), except that
it prints an error message if the file cannot be opened.

To open test from main(), you could write

#include <stddef.h>
#include <stdio.h>
maine)
{

extern FILE *open_file(char *file_name,
char *access_mode);

if «open_file("test", "r")) == NULL)
exit (1);

www.manaraa.com

12.5 Reading and Writing Data 335

Bug Alert

Note that the header files are included in both routines. You can in­
clude them in any number of different source files without causing con­
flicts.

Opening a File

In the statement

if «fp = fopen("test", "r" » == NULL)
fprintf(stderr, "Error opening file n

"test\n");

the parentheses around

fp = fopen("test", "r")

are necessary because == has higher precedence than =. Without the
parentheses, fp gets assigned zero or one, depending on whether the
result of fopenO is a null pointer or a valid pointer. This is a common
programming mistake.

12.4.1 Closing a File

To close a file, you need to use the fclose() function:

fclose (fp) i

Closing a file frees up the FILE structure that fp points to so that the
operating system can use the structure for a different file. It also flushes
any buffers associated with the stream. Most operating systems have a
limit on the number of streams that can be open at once, so it's a good
idea to close files when you're done with them. In any event, all open
streams are automatically closed when the program terminates normally.
Most operating systems will close open files even when a program aborts
abnormally, but you can't depend on this behavior. Moreover, networked
systems tend to have a high overhead for closing streams that you have
explicitly opened if you neglect to close them yourself.

12.5 Reading and Writing Data

Once you have opened a file, you use the file pointer to perform read and
write operations. There are three degrees of 110 granularity. That is, you
can perform 110 operations on three different sizes of objects. The three
degrees of granularity are as follows:

• One character at a time

• One line at a time

www.manaraa.com

336 12: Input and Output

• One block at a time

Each of these methods has some pros and cons. In the following sec­
tions, we show three ways to write a simple function that copies the con­
tents of one file to another. Each uses a different degree of granularity.

One rule that applies to all levels of I/O is that you cannot read from a
stream and then write to it without an intervening call to fseek(), rewind(),
or fflush(). The same rule holds for switching from write mode to read
mode. These three functions are the only I/O functions that flush the buff­
ers.

12.5.1 One Character at a Time

There are four functions that read and write one character to a stream:

getc()

fgetc()

putc()

fputc()

A macro that reads one character from a stream.

Same as getc(), but implemented as a function.

A macro that writes one character to a stream.

Same as putc(), but implemented as a function.

Note that getc() and putc() are usually implemented as macros whereas
fgetc() and fputc() are guaranteed to be functions. Because they are im­
plemented as macros, putc() and getc() usually run much faster. In fact, on
our machine, they are almost twice as fast as fgetc() and fputc(). Because
they are macros, however, they are susceptible to side-effect problems (see
the bug alert on page 311). For example, the following is a dangerous call
that may not work as expected:

putc('x', fp[j++]);

If an argument contains side-effect operators, you should use fgetc() or
fputc(), which are guaranteed to be implemented as functions. Note that
getc() and putc() are the only library calls for which this caveat applies.
For the rest of the library, the ANSI Standard states that if a function is
implemented as a macro, its argument(s) may appear only once in the
macro body. This restriction removes side-effect problems.

The following example uses getc() and putc() to copy one file to an­
other.

www.manaraa.com

12.5 Reading and Writing Data 337

Program
12-4

#include <stddef.h>
#include <stdio.h>
#define FAIL 0
#define SUCCESS 1

int copyfile(char *infile, char *outfile)
{

FILE *fpl, *fp2;

if ((fpl = fopen(infile, "rb" »
return FAIL;

if ((fp2=fopen (outfile, "wb" »
{

}

fclose(fpl)i
return FAIL;

while (!feof(fpl »
putc(getc(fpl), fp2)i

fclose(fpl)i
fclose (fp2) i
return SUCCESS;

NULL)

NULL)

We open both files in binary mode because we are reading each indi­
vidual character and are not concerned with the file's line structure. This
function will work for all files, regardless of the type of data stored in the
file.

The getc() function gets the next character from the specified stream
and then moves the file position indicator one position. Successive calls to
getc() read each character in a stream. When the end-of-file is encountered,
the feaf() function returns a nonzero value. Note that we cannot use the
return value of getcO to test for an end-of-file because the file is opened in
binary mode. For example, if we write

int c;
while ((c = getc(fpl » != EOF)

the loop will exit whenever the character read has the same value as EOF.
This mayor may not be a true end-of-file condition. The feaf() function,
on the other hand, is unambiguous.

www.manaraa.com

338 12: Input and Output

12.5.2 One Line at a Time

Another way to write this function is to read and write lines instead of
characters. There are two line-oriented 110 functions-fgets{} and fputs{}.
The prototype for fgets{} is:

char *fgets(char *s, int n, FILE stream);

The three arguments have the following meanings:

s

n

stream

A pointer to the first element of an array to which charac­
ters are written.

An integer representing the maximum number of characters
to read.

The stream from which to read.

fgets{} reads characters until it reaches a newline, an end-of-file, or the
maximum number of characters specified. fgets{} automatically inserts a
null character after the last character written to the array. This is why, in
the following copyfile{} function, we specify the maximum to be one less
than the array size. fgets{} returns NULL when it reaches the end-of-file.
Otherwise, it returns the first argument. The fputs{} function writes the
array identified by the first argument to the stream identified by the sec­
ond argument.

One point worth mentioning is the difference between fgets{} and gets{}
(the function that reads lines from stdin). Both functions append a null
character after the last character written. However, gets{} does not write
the terminating newline character to the input array. fgetsO does include
the terminating newline character. Also, fgets{} allows you to specify a
maximum number of characters to read, whereas gets{} reads characters
indefinitely until it encounters a newline or end-of-file.

The following function illustrates how you might implement copyfile
using the line-oriented functions. Note that we open the files in text mode
because we want to access the data line by line. If we open the files in bi­
nary mode, the fgets{} function might not work correctly because it would
look explicitly for a newline character. The file itself mayor may not in­
clude newline characters. If the file was written in text mode, it will con­
tain newline characters only if that is how the operating system denotes
new lines. In text mode, fgets{} uses the implementation's definition of a
newline.

www.manaraa.com

12.5 Reading and Writing Data 339

Program
12-5

#include <stddef.h>
#include <stdio . h>

#define FAIL a
#define SUCCESS 1
#define LlNESIZE 100

int copyfi1e(char *infile, char *outfi1e)
{

FILE *fp1, *fp2;
char 1ine[LINESIZE];

if «fp1 = fopen (infile, "r" » == NULL)
return FAIL;

if (fp2 = fopen(outfile, "w" » == NULL)
(

}

fclose(fp1);
return FAIL;

while (fgets(line, LINESIZE - 1, fp1) != NULL)
fputs(line, fp2)i

fclose(fp1)i
fclose (fp2) i
return SUCCESS;

You might think that the eopy{ileO version that reads and writes lines
would be faster than the version that reads and writes characters because
it requires fewer function calls. Actually, though, the version using geteO
and puteO is significantly faster. This is because most compilers implement
{getsO and {putsO using {geteOand (puteO, respectively. Because these are
functions rather than macros, they tend to run more slowly.

12.5.3 One Block at a Time

In addition to character and line granularity, you can also access data in
lumps called blocks. You can think of a block as an array. When you read
or write a block, you need to specify the number of elements in the block
and the size of each element. The two block 110 functions are fread() and
fwriteO. The prototype for (readO is

size_t fread(void *ptr, size_t size, size_t nmemb,
FILE *stream);

where size_t is an integral type defined in stdio.h.
The arguments represent the following data:

ptr A pointer to an array in which to store the data.

sIze The size of each element in the array.

nmemb
stream

The number of elements to read.

The file pointer.

www.manaraa.com

340 12: Input and Output

freadO returns the number of elements actually read. This should be
the same as the third argument unless an error occurs or an end-of-file
condition is encountered.

The fwriteO function is the mirror image of freadO. It takes the same
arguments, but instead of reading elements from the stream to the array, it
writes elements from the array to the stream.

The following example (Program 12-6) shows how you might imple­
ment copyfileO using the block 110 functions. Note that we test for an
end-of-file condition by comparing the actual number of elements read
(the value returned from fread()) with the number specified in the argu­
ment list. If they are different, it means that either an end-of-file or an er­
ror condition occurred. We use the ferrorO function to find out which of
the two possible events happened. If an error occurred, we print an error
message and return an error code. Otherwise we return a success code. For
the final fwriteO function we use the value of numJead as the number of
elements to write, because it is less than BLOCKSIZE.

Note that we took extra care to write the function so that it would be
easy to modify. If we want to change the size of each element in the array,
we need only to change the typedef statement at the top of the function. If
we want to change the number of elements read, we need only to redefine
BLOCKSIZE.

Like fputs() and fgets(), the block 110 functions are usually imple­
mented using fputc() and fgetc() functions, so they are not as efficient as
the macros putc() and getc(). Note also that these block sizes are inde­
pendent of the blocks used for buffering. The buffer size, for instance,
might be 1024 bytes. If the block size specified in a read operation is only
512 bytes, the operating system will still fetch 1024 bytes from the disk
and store them in memory. Only the first 512 bytes, however, will be
made available to the fread() function. On the next fread() call, the oper­
ating system will fetch the remaining 512 bytes from memory rather than
performing another disk access. The block sizes in freadO and fwrite()
functions, therefore, do not affect the number of device 110 operations
performed.

www.manaraa.com

12.6 Selecting an 1/0 Method 341

Program
12-6

#include <stddef.h>
#include <stdio.h>

#define FAIL 0
#define SUCCESS 1
#define BLOCKSIZE 512

typedef char DATA;

int copyfile(char *infile. char *outfile)
{

FILE *fpl, *fp2;
DATA block(BLOCKSIZE]i
int nUllLread;

if «fp1 = fopen (infile, "rb" » == NULL)
{

printf ("Error opening file %s for input. \n".
infile);

return FAIL;

if «fp2 = fopen(outfile. "wb")} == NULL)
{

printf("Error opening file %s for output.\n",
outfile } i

fclose(fpl)i
return FAILi

while «nUllLread = fread(block. sizeof(DATA) ,
BLOCKSIZE, fp1)} > O}

fwrite(block. sizeof(DATA). nUllLread. fp2),
fclose(fp1),
fclose(fp2)i

if (ferror(fp1 »
{

printf("Error reading file %s\n". infile);
return FAIL,

return SUCCESS,

12.6 Selecting an I/O Method

As we have shown with the different versions of copyfile{}, there are usu­
ally multiple ways to perform an VO task. Choosing the best method is a
matter of weighing pros and cons, paying special attention to simplicity,
efficiency, and portability.

www.manaraa.com

342

Program
12-7

12: Input and Output

From an efficiency standpoint, the macros putc() and getc() are usually
fastest. However, most operating systems have a means for performing
block 110 operations that can be even faster than putc() and getc(). These
capabilities, however, are often not available through the C runtime li­
brary. You may need to write assembly code or call operating system
services. UNIX systems, for example, provide routines called read() and
write(), which perform efficient block 110 transfers. If you think you may
want to use system block 110 operations in the future, it is probably a
good idea to write the original C routines using fread() and fwrite() be­
cause it will be easier to adapt these routines if they are already block ori­
ented.

Although efficiency is important, particularly with regard to 110, it is
not the only consideration. Sometimes the choice of an 110 method boils
down to a question of simplicity. For example, fgets() and fputs() are rela­
tively slow functions, but it may be worth sacrificing some speed if you
need to process entire lines.

Consider a function that counts the number of lines in a file. Using
fgets() and fputs(), the function can be written very simply:

#include <stdio.h>
#include <stddef .h>
#define MAX_LINE_SIZE 120

int lines_i~file(FILE *fp
{

char buf[MAX_LINE_SIZE);
int line_num = 0 ;

rewind(fp); /* Moves the file position indicator
• to the beginning of the file.
*/

while (fgets(buf, MAX_LINE_SIZE, fp) != NULL)
1 ineJlum++ ;

return lineJlum;

You could also write this function using character or block I/O, but the
function would be more complex. If execution speed is not important,
therefore, the above version is the best.

The last, but certainly not the least, consideration in choosing an I/O
method is portability. In terms of deciding between character, line, or
block 110, portability doesn't really playa role. Portability is a major con­
cern, however, in choosing between text mode and binary mode. If the file
contains textual data, such as source code files and documents, you should
open it in text mode and access it line by line. This will help you avoid
many pitfalls if you port the program to a different machine. On the other
hand, if the data are numeric and do not have a clear line structure, it is

www.manaraa.com

12.7 Unbuffered I/O 343

best to open the file in binary mode and access it either character by char­
acter or block by block.

12.7 Unbuffered I/O

Although the C runtime library provides the means to change the buffer
size, you should use the capability with care. In most cases, the compiler
developers have chosen a default buffer size that is optimal for the oper­
ating system under which the program will be run. If you change it, you
may experience a loss of 110 speed.

The one time when you need to tamper with the buffer size is when
you want to turn off buffering altogether. Typically, this occasion arises
when you want user input to be processed immediately. Normally, the
stdin stream is line-buffered, requiring the user to enter a newline charac­
ter before the input is sent to the program. For many interactive applica­
tions, this is unsatisfactory.

Consider, for example, a text editor program. The user may type char­
acters as part of the text or enter commands. For instance, the user could
press an up-arrow key to move the cursor to another line. The 110 func­
tions must be capable of processing each character as it is input, without
waiting for a terminating newline character.

To turn buffering off, you can use either the setbuf(} function or the
setvbuf(} function. The setbuf(} function takes two arguments: the first is a
file pointer, and the second is a pointer to a character array that is to serve
as the new buffer. If the array pointer is a null pointer, buffering is turned
off, as in

setbuf(stdin, NULL);

The setbuf(} function does not return a value.
The setvbuf(} function is similar to setbuf(}, but it is a bit more elabo­

rate. It takes two additional arguments that enable you to specify the type
of buffering (line, block, or no buffering) and the size of the array to be
used as the buffer. The buffer type should be one of three symbols (defined
in stdio.h):

_IOFBF block buffering

_IOLBF line buffering

_IONBF no buffering
To turn buffering off, therefore, you would write

stat = setvbuf(stdin, NULL, _IONBF, 0);

The setvbuf(} function returns a nonzero value if it is successful. If, for
some reason, it cannot honor the request, it returns zero. Consult Appen­
dix A for more information about setbuf(} and setvbuf(}.

www.manaraa.com

344 12: Input and Output

12.8 Random Access

The previous examples accessed files sequentially, beginning with the first
byte and accessing each successive byte in order. For a function such as
copyfileO, this is reasonable since you need to read and write each byte
anyway. It's just as fast to access them sequentially as any other way.

For many applications, however, you need to access particular bytes in
the middle of the file. In these cases, it is more efficient to use C's two ran­
dom access functions-fseekO and (tellO.

The fseekO function moves the file position indicator to a specified
character in a stream. The prototype for fseekO is

int fseek(FILE *stream, long int offset,
int whence);

The three arguments are

stream A file pointer.

offset

whence

An offset measured in characters (can be positive or nega­
tive).

The starting position from which to count the offset.

There are three choices for the whence argument, all of which are des-
ignated by names defined in stdio.h:

SEEK_SET The beginning of the file.

SEEK_CUR The current position of the file position indicator.

SEEK_END The end-of-file position.

For example, the statement

stat = fseek(fp, 10, SEEK~ET)

moves the file position indicator to character 10 of the stream. This will be
the next character read or written. Note that streams, like arrays, start at
the zero position, so character 10 is actualfy the 11th character in the
stream.

The value returned by fseekO is zero if the request is legal. If the re­
quest is illegal, fseekO returns a nonzero value. This can happen for a vari­
ety of reasons. For example, the following is illegal if fp is opened for
read-only access because it attempts to move the file position indicator
beyond the end-of-file position:

stat = fseek(fp, 1, SEEK_END)

Obviously, if SEEK_END is used with read-only files, the offset value
must be less than or equal to zero. Likewise, if SEEK_SET is used, the off­
set value must be greater than or equal to zero.

For binary streams, the offset argument can be any positive or negative
integer value that does not push the file position indicator out of the file.

www.manaraa.com

12.8 Random Access 345

For text streams, the offset argument must be either zero or a value re­
turned by ftell().

The fteliO function takes just one argument, which is a file pointer, and
returns the current position of the file position indicator. fteliO is used
primarily to return to a specified file position after performing one or
more 110 operations. For example, in most text editor programs, there is a
command that allows the user to search for a specified character string. If
the search fails, the cursor (and file position indicator) should return to its
position prior to the search. This might be implemented as follows:

cur-pos = ftell (fp);
if (search (string) == FAIL)

fseek(fp, cur-pos, SEEK-pET);

Note that the position returned by ftellO is measured from the begin­
ning of the file. For binary streams, the value returned by ftellO represents
the actual number of characters from the beginning of the file. For text
streams, the value returned by fteliO represents an implementation-defined
value that has meaning only when used as an offset to an fseekO call.

The example in the next section illustrates random access, as well as
some of the other 110 topics discussed in this chapter.

12.8.1 Printing a File in Sorted Order

Suppose you have a large data file composed of records. Let's assume that
the file contains one thousand records, where each record is a
VIT ALST A T structure, as declared below:

#define NAME_LEN 19
typedef char NAME [NAME_LEN) ;
typedef struct date
{

unsigned day: 5,
month: 5,
year : 11;

DATE;

typedef struct vitalstat
{

NAME vs_name;
char vs_ssnum[ll) ;
DATE vs_date;
char vs.-:j ersey;

VITALSTAT;

Suppose further that the records are arranged randomly, but you want
to print them alphabetically by the name field. First, you need to sort the
records.

There are two ways to sort records in a file. One is to actually rear­
range the records in alphabetical order. However, there are several draw­
backs to this method. One drawback is that you need to read the entire file
into memory, sort the records, and then write the file back to the storage

www.manaraa.com

346 12: Input and Output

device. This requires a great deal of 110 power. It also requires a great deal
of memory because the entire file must be in memory at once. (There are
ways to sort a file in parts, but they are complex and require even more
110 processing.) Another drawback is that if you add records in the future,
you need to repeat the entire process.

The other sorting solution is to read only the part of the record that
you want to sort (called the key) and pair each key with a file pointer
(called an index) that points to the entire record in the file. Sorting the key
elements involves less data than sorting the entire records. This is called an
index sort.

Suppose that the first five records have the following values.

Jordan, Larry 043-12-7895 5-11-1954

Bird, Michael 012-45-4721 3-24-1952

Erving, Isiah 065-23-5553 11-01-1960

Thomas, Earvin 041-92-1298 1-21-1949

Johnson, Julius 012-22-3365 7-15-1957

The key/index pairs would be:

index key

0 Jordan, Larry

1 Bird, Michael

2 Erving, Isiah

3 Thomas, Earvin

4 Johnson, Julius

Instead of physically sorting the entire records, we can sort the
key/index pairs by index value:

1 Bird, Michael

2 Erving, Isiah

4 Johnson, Julius

0 Jordan, Larry

3 Thomas, Earvin

The beauty of the indexing sort method is that you don't need to rear­
range the actual records themselves. You need only sort the index, which

www.manaraa.com

12.8 Random Access 347

Program
recs.h

is usually a smaller task (in our example, the records are so short that
there isn't much difference between sorting the records themselves and
sorting the entries in the index file). To figure out the alphabetical order,
though, you do need to read in the name field of each record.

The following function (Program 12-8) reads the key field of every rec­
ord and stores them in an array of structures that contain just two fields­
the record id (index) and the key.

We assume that the data file has already been opened, so that the func­
tion is passed a file pointer. The include file recs.h is shown in Program
recs.h below.

#ifndef NULL
#define NULL a
#endif

#define MAX~EC_NUM 100
#define NAME_LEN 32

typedef struct (
char city_of_birth[23);
char 10cation[32];
char nationality[32);
LOCATION;

typedef struct
int day;
int month;
int year;
BDATE;

typedef struct
int vs-year;
BDATE bdate;
long ssnwn;
char name [NAME_LENJ ;
struct element *next;
char UScitizen;
LOCATION location;
VITALSTAT;

typedef struct element
int vs-year;
char vs_name[NAME_LEN);
struct element *next;
char UScitizen;
LOCATION location;
ELEMENT;

typedef struct {
int index;
char key[NAME_LEN);
char name[NAME_LEN);
ELEMENT *element;
INDEX;

www.manaraa.com

348

Program
12-8

12: Input and Output

The function reads the first NAME_LEN characters of each record
using fgets() ahd stores them in the array names_index, then moves the file
position indicator to the beginning of the next record with fseek(). In this
way, we avoid reading extraneous parts of the record. In this case, of
course, the 110 buffering mechanism fetches blocks of 512 or 1024 charac­
ters, so the entire records are read anyway. Within each buffer, however,
we need only access the first field in each record. This saves us mem­
ory-to-memory data copying time, even though we don't save any de­
vice-to-memory processing time. For large records, which span blocks, this
approach could also save you device-to-memory processing time.

We include some error checking to ensure that the fseek() request is le­
gitimate. If fseek() returns an error that is not an end-of-file condition, we
exit the program with an error code. Otherwise, when an end-of-file con­
dition exists, we return the number of records read, which is also the
number of index fields stored in the array.

/* Reads up to max_rec~um records from a file and stores
* the key field of each record in an index array. Returns
* the number of key fields stored.
*/

#include "stdio.h"
#include "recs.h"

int get_records(FILE *data_file, INDEX names_index[J
, int maJLrec_num)

int k. offset = 0, counter = 0,

for (k = 0; !feof(dat~file) &&
counter < max_rec_num; k++)

(
fgetsCnames_index[k) .key, NAME_LEN, dat~file),

offset += sizeof(VITALSTAT);
if Cfseek(dat~file. offset, SEE~SET)

&& (!feof(data_file)))
exi t (1);

counter++;

return counter,

Note that the offset value is computed by taking the size of the
VIT ALST A T structure. By using the sizeof operator, we make the function
more portable because the size of shorts may vary from one machine to
another. In addition, the structure may contain gaps due to alignment re­
strictions.

www.manaraa.com

12.8 Random Access 349

Program
12-9

The next task is to sort the array of NAMESjNDEX structures. This
function, which makes use of the library function qsort(), is shown below.
The return value is a pointer to an ordered array of NAMES_INDEX
structures.

1* Sort an array of NAMES_INDEX structures by the name
* field. There are index_count elements to be sorted.
* Returns a pointer to the sorted array.
*1

#include <stdlib.h> 1* Header file for qsort() *1
#include "recs.h"

INDEX* sort_index (INDEX names_index[J, int inde~count)
{

int j,
static int compare_func(); 1* Defined later *1

1* Assign values to the index field of each structure. */
for (j = Oi j < index_count; j++)

names_index[j] . index = j;

qsort(names_index, inde~count,

sizeof(INDEX), compare_func),

return names_index,

static int compare_func(INDEX *p, INDEX *q)
{

return strcmp(p->name, q->name);

The next step is to print out the records in their sorted order. We defi­
nitely need to use fseek() for this function because we need to jump around
the file. We can compute the starting point of each record by multiplying
the index value with the size of the VITALSTA T structure. If each
VITALSTAT structure is 40 characters long, for example, record 50 will
start at character 2000. After positioning the file position indicator with
fseek(), we use fread() to read each record. Finally, we print each record
with a printfO call.

www.manaraa.com

350

Program
12-10

12: Input and Output

/* Print the records in a file in the order
* indicated by the index array.
*/

#include <stdio.h>
#include "recs.h"

void print_indexe~records(FILE *data_file,INDEX index [1 ,
int indeJLcount)

VITALSTAT VS;
int j;

for (j = 0; j <= inde~count; j++)
{

if (fseek(data_file
, sizeof(VITALSTAT) * index[j1 . index
, SEEK.....SET »

exit (1) i
fread(&vs, I, sizeof(VITALSTAT), data_file);
printf("\20s, \hd, \hd, \hd, \12s", vs.name

, vs.bdate.day, vs.bdate.rnonth
, vs.bdate.year, vs.ssnurn);

To make this program complete, we need a main() function that calls
these other functions. We have written main() so the filename can be
passed as an argument.

Function

getchar()

gets()

printf()

putchar()

puts()

scanf()

Table 12-3: I/O to stdin and stdout.

Description

Reads the next character from the standard input stream.
getchar() is identical to getc(stdin).

Reads characters from stdin until a newline or end-of-file is
encountered.

Outputs one or more values according to user-defined for­
matting rules.

Outputs a single character to the standard output stream.
putchar() is identical to putc(stdout).

Outputs a string of characters to stdout, appending a newline
character to the end of the string.

Reads one or more values from stdin, interpreting each ac­
cording to user-defined formatting rules.

www.manaraa.com

12.8 Random Access 351

Program
12-11

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "recs.h"

int maine int argc, char *argv[)
{

extern int get_records();
extern void sort_index();
extern int print_indexe~records!);

FILE *data_file;
static INDEX index [MAX-REC-NUM] ;
char filename[32];
int num_recs_read;

if (arge != 2)
{

printf! "Error: must enter filename\n");
printf! "Filename: II);
scanf("%s", filename);

else
strepy(filename, argv[l]);

if «data_file = fopen(filename, lOr" » == NULL)
{

printf("Error opening file %5.\n", filename);
exit! I);

n~recs_read = get_index! data_file, index, MAX_REC~
) ;

sort_index! index, n~rec5_read);
print_indexed_records(data_file, index

, n~rees_read);
exit (0);

Table 12-4: Error-Handling Functions.

Function Description

clearerr() Resets the error and end-of-file indicators for the specified
stream.

feom

ferror()

Checks whether an end-of-file was encountered during a pre­
vious read operation.

Returns an integer error code (the value of errno) if an error
occurred while reading from or writing to a stream.

www.manaraa.com

352 12: Input and Output

Table 12-5: File Management Functions.

Function Description

remove() Deletes a file.

rename() Renames a file.

tmpfile() Creates a temporary binary file.

tmpnam() Generates a string that can be used as the name of a tempo­
rary file.

Function

fclose()

fflush()

fgetc()

Table 12-6: I/O to files

Description

Closes a stream.

Flushes a buffer by writing out everything currently in the
buffer. The stream remains open.

Same as getc(), but it is implemented as a function rather than
a macro.

fgets() Reads a string from a specified input stream. Unlike gets(),
fgets() enables specification of a maximum number of charac­
ters to read.

fopenO Opens and possibly creates a file and associates a stream with
it. fopen() takes two arguments: a character string identifying
the file and a mode specification that determines what types
of operations may be performed on the file.

fprintf() Exactly like printf(), except that output is to a specified file.

fputc() Writes a character to a stream. This is the same as putc(), but
it is implemented as a function rather than a macro.

fputs() Writes a string to a stream. This is like puts(), except that it
does not append a newline to the stream.

fread() Reads a block of binary data from a stream. The arguments
specify the size of the block and where it should be stored.

freopen() Closes a stream and then reopens it for a new file. This is use­
ful for recycling a stream, particularly stdin, stdout, and
stderr.

fscanf() Same as scanf(), except that data are read from a specified
file.

www.manaraa.com

12.9 Exercises

fseekO

ftellO

fwriteO

geteO

puteO

ungeteO

12.9 Exercises

353

Table 12-6 (continued)

Positions a file position indicator, enabling random access to
be performed on the file.

Returns the position of a file position indicator.

Writes a block of data from a buffer to a stream.

Reads a character from a stream.

Writes a character to a specified stream.

Pushes a character onto a stream. The next call to geteO re­
turns this character.

1. Write a program that implements the #include preprocessor com­
mand.

2. Write a function called eompressO that removes all extraneous white
space from a C source file. (Warning: don't remove white space from
character and string constants.)

3. Write a program to check for proper pairing of braces and parentheses
in a C source file.

4. Write a program that counts the number of characters, words, and
lines in a file.

5. Write a program that copies all files on the command line (see argv) to
stdout.

6. Write a program that enables you to enter data into a file containing
VIT ALST A T structures.

7. Write a program that reads characters from standard input and copies
them to standard output, translating each '\r' '\n' sequence into '\n'.

8. Write a program similar to Exercise 7 except that it takes two com­
mand line options:

-from srcstr
-to deststr

Each occurrence of srestr on input is converted to deststr on output.

9. Write a program that opens a file specified on the command line and
prints it out backward.

www.manaraa.com

354 12: Input and Output

10. Write a program to read any file specified on the command line (even
a binary file) and print out only those sequences of two or more print­
able characters ('a'_'z', 'A'_'Z', '_', '0 '-'9').

Use your executable program as input. Explain what comes out.

www.manaraa.com

13
Software

Engineering­
A Case Study

For 'tis the sport to have the engineer Hoist with his own petar.
Shakespeare, Hamlet

If you have come this far in the book, you have been introduced to most
of the mechanics of the C language, and you have probably mastered a
few. In addition, you have, we hope, learned to think about engineering
your programs, as opposed to merely writing them.

In this chapter, we return to some of the software engineering themes
introduced in Chapter 3. Thus far, we have concentrated on the coding
stages of program design. In this chapter, we take a closer look at some of
the other stages. To make our discussion concrete, we show how we went
about designing and programming a C interpreter. The actual source code
is included in the enclosed diskette.

www.manaraa.com

356 13: Software Engineering-A Case Study

13.1 Style Review

Table 13-1 summarizes some of the stylistic issues that we have addressed
throughout the book. Although style is important, there are other aspects
of software engineering that are every bit as critical. These include:

• Product Specification

• Architectural Design

• Project Planning and Cost Estimation

• Detailed Design

• Coding and Documentation

• Debugging

• Testing and Performance Analysis

• Maintenance

Table 13-1: Summary of Programming Style Issues.

Poor Programming Style

Putting extern declarations In

source files.

Good Programming Style

Putting extern declaration In .h
header files.

Sharing data among functions by Sharing data by passing arguments.
making the data global.

Giving data global scope when Using static to give data and func-
file scope would suffice. tions file scope.

. Creating multiple functions that
contain similar, redundant sec­
tions of code.

Using non-mnemonic names.

Using numeric constants.

Using goto.

Creating orthogonal, general­
purpose functions that replace re­
dundant code sections.

Using names that connote usage.

Using named constants.

Using structured control flow
statements.

Writing redundant code se- Encapsulating frequently-used code
quences. sequences in functions.

To illustrate some of these areas, we are going to show the steps we
performed to develop an interpreter for the C language. Unlike compilers,
interpreters enable you to execute source code immediately after you write
it, without going through the compilation and linking stages. On the
downside, however, interpreted programs usually take longer to execute
than compiled programs. For this reason, interpreters are often used in the

www.manaraa.com

13.2 Product Specification 357

development stage, where execution speed is less important than compila­
tion time. When the program has been written and debugged, it is com­
piled to produce efficient executable code. Interpreters are also useful
learning tools because of their interactive nature.

The interpreter we develop in this chapter is only a subset of a com­
plete C interpreter. The techniques we use in its development illustrate
principles that hold true for all large projects. See the accompanying disk­
ette for the complete listings of all modules described in this chapter.

13.2 Product Specification

A good outline for a specification is as follows:

1. Abstract of project

2. Command line interface

3. Input file syntax

4. Screen design

5. Output file format descriptions

6. Interactive command language (if any)

7. Error messages

8. Future extensions

The specification for our C interpreter is shown below. This is a short
specification. It benefits from pointing at specifications in other docu­
ments. Large projects, without benefit of prior specifications, may require
hundreds, or even thousands, of pages to define product behavior.

1. Abstract

The intent of this project is to create an interpreter that supports a
subset of the C language. It will support

• C scalar data types.

• Most C expressions.

• Some control-flow constructs.

The goal is to write this interpreter in a way that illustrates the
concepts of software engineering that would be used in projects
many times larger than this one.

2. Command Line Interface

Unless a command line argument starts with the dash (-) charac­
ter, it is treated as a source file. This file will be read and pre-

www.manaraa.com

358 13: Software Engineering-A Case Study

parsed before the user receives a prompt. Any functions defined in
the source files will be available to the user.

If a command line argument is prefixed with a dash character,
it is parsed as an option flag to the interpreter. The valid option
flags are:

-dlex Enables debugging information for the
lexical analyzer.

-dexp Enables debugging information for the
expreSSlOn parser.

-dstmt Enables debugging information for the
statement parser.

-run Runs the program as soon as it is read
and exits when finished.

3. Input File Syntax

The input file format is a subset of the C language as specified by
the ANSI Standard. The following subsections qescribe the sup­
ported subset.

3.1 Data Types

The interpreter supports the following scalar types: char, short,
int, long, float, double, void, structures, unions, and enums and
pointers. Arrays of scalar type are also supported.

The following are not supported: typedefs.

3.2 Expressions

Precedence rules and converSlOn rules are as described by the
ANSI Standard.

3.2.1 Constants

Fixed and floating-point constants are allowed as specified by the
ANSI Standard. Double-quoted strings and single-quoted charac­
ters are allowed.

Long and unsigned constants are not supported.

3.2.2 Variables

Variables of up to 31 characters are supported with standard C
naming conventions.

www.manaraa.com

13.2 Product Specification 359

3.2.3 Operators

For the type double, the following C expression operators are
supported: sizeof, =, +, - (unary), - (binary), *, /, <, >, <=, > =, ==,
!=, !, function call, and array reference.

For the type int, the following C expression operators are sup­
ported: sizeof, =, +, - (unary), - (binary), *, /, %, I, & (binary), \
<, >, <=, >=, ==, !=, !, ++, --, », «, -, ->, ., function call, and ar­
ray reference.

The following operators are not supported: ?:, casts, &&, I I,
and.

3.3 Statements

The following statement constructs are supported: expressions,
for, while, if, break, return, and compound statements.

The following statement constructs are not supported: switch,
continue, goto, do ... while, and statement labels.

3.4 Preprocessor Directives

No preprocessor directives are supported.

3.5 Library Functions

The following runtime library functions are available: printfO,
scanfO, exit(), sin(), cos(), tan(), sqrt(), pow(), exp(), mal/oc(),
(ree(), date(), ctime(), strcpy(), strcmp(), strcat().

4. Output File Specification

None.

5. Interactive Command Language

The interpreter supports a command language, as described in the
following subsections.

5.1 Prompt

The prompt consists of the string "cint>".

5.2 run Command

The run command starts execution of the procedure main().

www.manaraa.com

360 13: Software Engineering-A Case Study

5.3 list Command

The list command displays the entire entered program to standard
output.

5.4 Editing Capability

None.

5.5 Command Set

The complete C subset as described in Section 3 can be typed in
from the console after all command-line files have been read in.

Additionally, any expression that does not parse as a declara­
tion will be parsed as a C expression.

6. Errors

The interpreter supports the following diagnostic error messages.
Italicized words represent parameters that are replaced by variable
names or character strings.

1. Expected symbol token

2. Missing']' in array declaration
3. Error in arg list. Wanted a symbol, not a string

4. Bad argument syntax
5. Can't have nested functions
6. Expected '{'
7. Missing' (' after function name
8. Missing ')' in function call
9. Missing ']'
10.Noninteger operand to '!'
11.Noninteger operand to '-'
12.Bad operand to '++'
13.Bad operand to '--'
14. Unmatched parentheses
15. Unexpected token in expression: string

16.Bad operand to '++'

17.Bad operand to '--'
18.Bad subscript expression
19.Missing,], in array subscript
20.Illegal LHS to assign op
21.Unexpected token in expression: 'string'
22.End of file before end of comment

www.manaraa.com

13.3 Architectural Design

23.No main function
24.Missing semicolon
25. Missing '(' after if

26.Missing ')' after if
27.Missing '(' after while
28.Missing ')' after while

29.Missing '(' after for

30.Missing ')' after for

31.Internal error in cint, premature token list end
32.Missing 'j'

33.Bad function name string

13.3 Architectural Design

361

Once the product is specified, a plan of attack must be formulated. This
involves deciding on the various phases of processing and the major data
structures.

A common design method that we have found effective is called step­
wise refinement, which was first enunciated by Niklaus Wirth in his 1971
CACM paper, Program Development by Stepwise Refinement. In this
method, you carve up the problem at a high level of abstraction and then
address each subproblem, dividing it into smaller, less abstract parts until
each part can be easily implemented. The highest level of division is typi­
cally a program, although it may be a set of programs; at the next level,
the program consists of cohesive sets of functions, called modules. A mod­
ule consists of locally scoped (via the static keyword) support routines and
globally visible interface routines. You should have one source file (which
optionally includes header files) per module.

There are three basic phases to software design:

1. Identify major divisions of functionality (i.e., define what goes into
each module).

2. Identify the major data structures that are shared by modules iden­
tified in Step 1.

3. Create an additional module for each data structure identified in
Step 2.

Applying the first step in the design of our interpreter, we arrive at the
modules shown in Table 13-2.

The goal in dividing a program into modules is to find clearly demar­
cated and cohesive sections that are not strongly interrelated with other
sections. Once the modules are set forth, the same divide and conquer

www.manaraa.com

362 13: Software Engineering-A Case Study

method that we used for determining modules can be used to decide upon
the functions within a module. For example, sym.c includes functions to:

• Enter a symbol.

• Find a symbol.

• Get the type of a symbol.

• Set the type of a symbol.

• Get the value of a symbol.

• Set the value of a symbol.

The fewer intermodule dependencies that exist, the easier the program
is to read and maintain. Some of the modules we defined for our inter­
preter are similar to the chapters we chose for the book. This is not sur­
prising because the same goals of clarity and cohesion guided our
organization of this book.

In Steps 2 and 3 of the design process, we identify the major data struc­
tures required by each module and create additional modules to manage
access to these structures:

token_st.c Manage the data structure for the tokenized input
stream.

memory.c Control access to program memory.

In addition to these modules, we create several header files that contain
declarations and definitions used across modules.

cint.h Used by all modules.

sym.h Defines values and data structures used by sym.

lex.h Defines values and data structures used by lex.

Defines values and data structures used by token_st.

Table 13-2: List of Modules in the C Interpreter.

Module Name

main.c

lex.c

declare.c

expr.c

sym.c

stmt.c

Purpose

Read the command line and provide the starting point
for the program.

II TokenizeII the input (i.e., divide the input into
meaningful C language tokens).

Parse declarations.

Parse and evaluate expressions.

Manipulate symbols.

Parse and execute statements.

www.manaraa.com

13.4 Project Planning 363

13.4 Project Planning

For scheduling purposes a project plan should be created that explains
how the project is to be fulfilled. The project plan breaks down the task
into manageable subtasks and gives time estimates for each subtask. De­
pendencies and milestones are mentioned as well. The granularity of such
a schedule is usually a staff-week. There are various software products
available to help with just this sort of scheduling.

A good outline for a project plan is as follows:

1. Abstract

2. Itemization of subtasks and time estimates

3. Timelines and milestones (pert chart)

4. Resource requirements (people, computers, disk storage, special
hardware)

5. Other projects this project depends on

6. Other projects that depend on this project working

As an illustration, the following list shows our project plan for the C
interpreter.

1. Abstract

This document details a plan for implementing the product speci­
fication for the "cint" C subset interpreter.

2. Itemization of subtasks and time estimates

The following modules need to be written:

Module Time Estimate

memory manager 0.5 week
lexical analyzer 2.0 weeks
symbol table handler 2.0 weeks

main (reads command line 1.0 week
and handles file open/close)

expression handler 4.0 weeks

token stream manager 2.0 weeks

declaration parser 1.0 week
statement parser 1.0 week

debug & test 13.0 weeks
total time 26.5 weeks

www.manaraa.com

364 13: Software Engineering-A Case Study

3. Timelines and milestones (pert chart)

The overlap of some of the modules in Figure 13-1 indicates that
some modules can be developed simultaneously. The overall time
for project completion, therefore, can be decreased by adding
staff. It is clear from the figure that an additional programmer
would cut our development time in half.

4. Resources required

Machine: Any system that supports a C compiler and make utility
(for example, any UNIX system or MS/DOS system)
Software: A C compiler and make utility.
Programmers: 1
Disk storage: 10 megabytes of hard-disk storage

5. Other projects on which this project depends

None.

6. Other projects that depend on this project

Publication of this book C: A Software Engineering Approach de­
pends on the successful completion of this project.

v test creation

V main V
V expr V
\\lkiY

\I sym V
V stmt V

\I token st V

v testing

run:
mainO

,.--- (
printf(II Hello

World\n");
}

\I declare \11
add 2+2 -

r- start testing

week

assign to a I. variable

o 3 6 9 12 15 18 21 24

Figure 13-1: Time lines and milestones for the cint pro;ed.

27

v

pass test
- suite

30

www.manaraa.com

13.5 Detailed Design 365

13.5 Detailed Design

The detailed design stage is where you decide how to implement the design
decisions made during the high-level design stage. This primarily involves
choosing data structures and algorithms.

13.5.1 Choosing Data Structures and Algorithms

An important part of the design stage involves selecting appropriate data
structures and efficient algorithms for accessing the data structures. There
a number of factors to consider when designing data structures and algo­
rithms. How fast is the algorithm in processing typical data? How much
memory will the structure require? Will it be easy to change if we want to
add new capabilities? In this section, we give a taste of what's involved in
resolving these issues by discussing the symbol table in cint.

The symbol table is the data structure that holds information about
each variable that is declared in a program. We need to know the vari­
able's name, its data type, its storage class, and its location in memory. All
of this information is stored in a structure named SYM.

Given N number of symbols declared in a program, we need a way of
organizing the SYM structures so that they can be easily accessed. The
most obvious organization scheme is a linked list. Each time a new symbol
is declared, we add an element to the list. Unfortunately, searching
through a linked list for a particular element is relatively inefficient. In the
best case, the element we want will be the first element in the list. But in
the worst case, it will be the last element, which means we will have to
look at N elements before we find the right one. On average, the number
of look-ups to find a particular element is NIZ, which is not very good.

A better way to organize the symbol elements is in the form of a binary
tree. In Chapter 6, we introduced binary trees as a way to parse expres­
sions, but binary trees are also widely used to store symbol tables. In this
method, each symbol has two branches coming off it-a left branch and a
right branch. The left branch points to all symbols that are alphabetically
before the node and the right branch points to all symbols that are alpha­
betically after the node.

Figure 13-2 shows a binary tree for 15 symbols. In the case of a binary
tree, the maximum number of look-ups is the same as the number of levels
in the tree. To find x, for instance, we need to go through pf, sub _s, and
var. Note that the number of symbols on each level is 2 to the m power,
where m is the level number. If the number of symbols is N, therefore, the
maximum number of levels (and hence look-ups) is log2N. This is consid­
erably better than N, which is the maximum number of look-ups for the
linked-list method.

Note, however, that the number of levels is log2N only if the tree is
balanced-that is, if each node has the same number of nodes below it on

www.manaraa.com

366 13: Software Engineering-A Case Study

the left as on the right. If the tree is unbalanced, as in Figure 13-3, the
maximum number of look-ups approaches N again. In fact, a tree that is
completely unbalanced is identical to a simple linked list. It is a difficult
task to keep a tree balanced as you add symbols to it. (We leave it as an
exercise to the reader to design an algorithm that turns an unbalanced tree
into a balanced tree.)

Figure 13-2: Balanced binary tree implementation of a symbol table.

Because it is difficult to keep a binary tree balanced, it is often better to
use an alternative method called a hash table. A hash table is an array of
pointers, each of which typically points to the beginning of a linked list.
Each symbol is assigned to one of the linked lists. To determine to which
linked list a symbol is assigned, you need to convert the symbol name into
an integer that serves as the subscript to the array. For example, the sym­
bol name var might be converted to the integer value 5, which would then
be used as the subscript for the array of pointers. var would be stored
somewhere in the linked list pointed to by element 5 of the array.

Ideally, each linked list should be short so that once the array subscript
is determined, the number of look-ups is minimal. In a very sparse hash
table, for example, each linked list contains only one or two elements, so
the maximum number of look-ups is two. Note, however, that you must
allocate space for the entire array at the start of the program. It is some­
times impractical, therefore, to create an array large enough to ensure that
the hash table will always be sparse. Also, it is important to convert the
symbol names into integers in such a way that the resulting integer values
are spread evenly across the range of subscript values. The following func­
tion is a good hash function that returns a number between 0 and
HASHSIZE based on the values of all the characters in the symbol name.
Experience has shown that this function produces a uniform distribution.

www.manaraa.com

13.5 Detailed Design 367

Program
13-1

Figure 13-3: Unbalanced binary tree implementation of a symbol table.

#define HASHSIZE 211 1* The size of the table
* should be a prime number.
*1

int hash_function(char *p)
{

int has~val = 0;
for (; *p; p++)
has~val = has~val * 65599 + *p;

has~val \= HASHSIZE;
return has~val;

Assuming that symbols are evenly distributed throughout the hash ta­
ble, the maximum number of look-ups is simply Nih, where h is the size of
the table. For example, if there are 400 symbols and 200 linked lists, each
linked list will contain two entries, so the maximum number of look-ups
will be two. In practice, the symbols are never distributed this evenly, but

www.manaraa.com

368 13: Software Engineering-A Case Study

the number of look-ups is still likely to be smaller than in a binary tree
model. Note, however, that there is a random element to hash tables that
makes it impossible to predict in a deterministic way exactly how efficient
it will be. It takes some trial-and-error testing to arrive at the ideal size for
the table and the best algorithm for producing a uniform distribution of
symbols.

This discussion barely touches the surface of searching algorithms, but
it does show that you need to devote considerable thought and research to
choosing efficient algorithms at the design stage. For more information
about this subject, we recommend the third volume ("Searching and Sort­
ing Algorithms") of The Art of Computer Programming, by Donald E.
Knuth. Another good book on this subject is Design and Analysis of
Computer Algorithms by Aho, Hopcroft, and Ullman.

Regardless of what algorithm you select, you should implement the
data structure so that it can be easily modified for different algorithms. In
our version of cint, for example, we use a simple and inefficient linked-list
organization for the symbol table. But the symbol table is a
well-abstracted module in that it hides its implementation from the other
parts of the product. Given this abstract interface, it is relatively easy to
modify the program to use a more efficient searching algorithm. We pose
this enhancement as an exercise for the reader.

13.5.2 Information Hiding

To control software complexity, it is often useful to limit the amount of
information that each module can "see." We introduced this software en­
gineering technique, known as information hiding, in Section O.

There are a number of ways to implement information hiding. For our
interpreter, we have borrowed a notion called objects from c++ (or pri­
vate types from the Ada programming language). Private types expose
enough information about data structures so that other modules can de­
clare them properly for type-checking purposes but cannot access the data
structures.

In C, we implement private types by conditionally compiling two dec­
larations of the symbol data structure in sym.h. The detailed declaration is
compiled for the sym.c module, and a deliberately vague declaration is
compiled for other modules. The detailed declaration is compiled only if
the macro SYM_OWNER is defined to expand to a nonzero value (it is
defined in sym.c, but not in the other modules):

www.manaraa.com

13.6 Software Tools for Software Production

struct -private_type_sym
{

} ;

char * sym_name;
VALUE sym_value;

#if S'flLOWNER
typedef struct -private_type_sym SYM;

#else
typedef struct
{

char ~[sizeof struct -private_sym] ;
} SYM;

#endif

369

If SYM_OWNER is defined, SYM is declared as a structure with two
members, sym_name and sym_value. If SYM_OWNER is not defined,
SYM is declared as a structure with an array of char. In either case, the
size of SYM is the same, so there won't be conflicts. External modules,
however, will not be able to access the module through the member
names.

13.6 Software Tools for Software Production

A C compiler is a software tool for software production, as are editors and
debuggers. A full C interpreter is also a valuable software tool for debug­
ging because it shortens the compile-edit-debug cycle. There are a number
of other tools that are helpful for efficient software production. In fact,
there is an entire industry, called Computer-Aided Software Engineering
(CASE), that develops utilities to facilitate software production. The
UNIX operating system includes the following utilities:

flow Analyzes the function call tree.

grep

lint

prof

Finds every occurrence of a name in a set of files and
prints out the file name and line containing the match.

Examines C source files to detect potential bugs and
nonportable constructs.

Pinpoints CPU-expensive parts of a program.

Most computer systems today also have source-code control and
automatic product-build software tools available. These tools are indis­
pensable for building large software systems. A well-known source code
control system under the UNIX system is sees. An even more famous
UNIX software build utility is known as make. A good book on using and
building software tools is Software Tools by Kernighan and Plauger.

www.manaraa.com

370 13: Software Engineering-A Case Study

13.6.1 Source Management

For a large software product with many subsystems and modules and
more than one programmer, it is important to organize the source files so
that people don't get in each other's way. A good organization scheme is
to create a directory for each subsystem and a directory for subsystem in­
clude files. For instance, if our interpreter included an editor and debugger
as subsystems, its source-file directory structure would look like Figure 13-
4.

Figure 13-4: Directory structure for C interpreter proiect containing debug and edit
subsystems.

During development of the product, a version of the source tree is
stored in a publicly accessible place. To work on particular files, an indi­
vidual makes copies of the files, edits the private copies, and generates a
private copy of the product using the public object files combined with the
newly modified private object files. After testing the private version to
make sure that the changes are correct, the modified source files are copied
back into the public source tree, replacing the older files.

A source-control system can be extremely useful in managing the
source tree. A source-control utility maintains a log of changes to a source
file and a status of the file. For example, it keeps track of whether the file
is logged out for editing and who logged it out. That way, two people
can't accidentally edit the same file at the same time and enter incompati­
ble changes. The change history is useful for removing ill-conceived fea­
tures or discovering what change has caused the latest bug. Under UNIX,
sees is a popular source-control utility.

It is common for bugs to be introduced into a product by programmers
who change one part of the program without realizing how the change
will affect other parts of the product. For this reason, it is important that
you record changes to source files. When new bugs crop up, the first place
to look is in recently changed files.

www.manaraa.com

13.6 Software Tools for Software Production 371

13.6.2 Automatic Product Building

The UNIX make utility gets its instructions for building programs from a
build file named makefile. The makefile for cint follows:

makefile for cint - a subset C interpreter
OBJECTS = expr.o lex.o sym.o main.o token_st.o \
stmt.O declare.o memory.o
CFLAGS = -DDEBUG=l
cint: $ (OBJECTS)
cc -0 cint $(OBJECTS)
$ (OBJECTS) : (cint.h lex.h sym.h token-pt.h
end of makefile

The first line is a comment describing the makefile (the pound sign (#)
signifies a comment). The second line is a macro definition that associates
the name OBJECTS with the names of the files to the right of the equal
sign. In this case, the files are the objects required to build cint. The fourth
line is another macro definition. CFLAGS holds the command line flags
that are to be used when the make utility produces a C compile command
line. In this case, the -DDE-BUG=l option tells the C compiler to compile
as if the line

#define DEBUG 1

were inserted as the first line of the program.
The lines with colons in them are called dependency lines. The file­

names on the left-hand side of the colon depend on the filenames on the
right-hand side. For example, the line

cint: $ (OBJECTS)

means that the executable file cint depends on all of the object files. The
notation

$ (OBJECTS)

expands the macro OBJECTS. If the line following a dependency starts
with a tab, it is treated as a command to be issued by make whenever any
of the objects on the right-hand side of a dependency line are newer than
the object on the left-hand side. The command line in our example is

cc -0 cint $ (OBJECTS)

If there is no command line present, make uses default rules for issuing
commands that create files of one suffix type from files of another suffix
type. For instance, when make detects that a .c file is newer than a .a file,
it invokes its default rule for building .a files from .c files:

cc -c changed -file.c

which creates changed-file.a.
To see how make works, assume you just edited sym.c to fix a bug.

When you type "make," make reads makefile and notices that cint is de­
pendent on a number of files, including sym.a. Because sym.a does not

www.manaraa.com

372 13: Software Engineering-A Case Study

occur on the left-hand side of a ':' in the makefile, make uses its built-in
default dependency rules to determine that sym.o must be dependent on
sym.c. When it checks the file modified dates, make discovers that sym.c is
newer than sym.o. make then uses its default build rule for turning .c files
into .0 files and issues the command

cc -c -DDEBUG sym.c

Now make determines that cint is older than sym.o, and since, from
the makefile, cint depends on sym.o, it issues the command given in the
makefile to build cint:

cc -0 cint expr.o lex.o sym.o rnain.o tOken_st.o\
stmt.O declare.o

which creates cint out of the latest versions of all the objects.

13.6.3 Debugging

When it isn't obvious from examination of the user input why a product
fails, you should rely on internal product debug information. This is usu­
ally available through a command line option that is not divulged to the
general public. Our C interpreter, for example, contains three such debug
options. If the answer still eludes you, an interactive debugger is the an­
swer.

13.7 Documentation

Up to now, we have focused on internal documentation. Equally impor­
tant to the success of the project, however, is the documentation that goes
to the end user. Typically, end-user documentation is written by one or
more professional technical writers. A good technical writer combines a
rare talent for clear writing with a grasp of computer technology and is
indispensable in any software endeavor.

The technical writer should become involved in the project at an early
date and may actually help write the product and design specifications. It
is in the interest of both the technical writer and the developers to produce
specifications that are well written and accurate. The technical writer uses
them as base documents from which to write more polished end-user
documentation.

If the technical writer cannot find the answer to a question in one of
the specifications, he or she has two options:

1. Test the product itself, if it's available.

2. Ask the developers for the information.

www.manaraa.com

13.8 Exercises 373

Both approaches have advantages and disadvantages. The advantage of
the first approach is that the writer will actually test the product. This
testing may turn up unexpected behavior unknown to the developers, in­
cluding bugs. Moreover, it ensures that the writer will be familiar with the
product and will document exactly what the user will see. The disadvan­
tage of this approach is that it is time-consuming. Also, a reliable version
of the product may not be available until it's too late.

The main advantage of the second approach is that it is fast. Also, by
asking the developer for information, the writer implies that the informa­
tion is not available in the specs. This may be an oversight that the devel­
opers should address. There are two disadvantages to this approach. First,
the developer may give the technical writer erroneous information. Sec­
ond, time taken to answer questions is time not spent programming. Usu­
ally, these disadvantages go hand in hand because a busy programmer
may give offhand and incorrect answers just to mollify an inquisitive tech
writer.

One documentation technique that we have found effective is for the
technical writer to write a rough draft of the manual(s), inserting notes
and question marks where there is confusion. The developers can then
review this draft at their leisure rather than being periodically interrupted
with isolated questions. The more draft versions a document undergoes,
the better the final version will be.

An alternative strategy is for the programmer to write the initial draft
and have the tech writer edit it. Our own experience has proven that this
technique is effective only if the programmer is a talented writer and is
motivated to write a high-quality initial draft.

To produce quality documentation, a tech writer should make use of
all the resources available-specifications, versions of the product itself,
and developers. For their part, the developers must understand that the
quality of the documentation will affect the ultimate success or failure of
the product. Tech writers cannot perform their jobs without the develop­
ers' cooperation.

13.8 Exercises

1. Find five bugs in the sample C interpreter, cint (included on the ac­
companying diskette), and fix them. Be sure to include test programs
that detect the presence of the bug.

2. Add the "op=" operators to exp.c in cint.

3. Write a specification and project plan for one of the following proj­
ects:

a) Add preprocessor directives to lex.c in cint.

www.manaraa.com

374 13: Software Engineering-A Case Study

b) Give the list command an optional file name so that the listing
can be sent to the file.

c) Add unsigned data types.

d) Add the ?: operator to cint.

e) Add casts to cint.

f) Add structure and union printing to cint.

g) Write a screen-oriented editor front-end to cint, so that you
can edit the token stream directly.

h) Create a breakpoint facility that allows you to stop at any
source line and examine and set the values of local and global
variables.

4. Profile cint or some other program to which you have the source,
identify the bottlenecks, and suggest ways of speeding up the program.

5. Write a specification for and develop a library of graphics calls that
can draw lines, squares, triangles, and circles of arbitrary size. Be sure
to use a consistent naming convention and argument placement. Use
the library to make a pretty picture.

6. Write a program to solve the three queens problem. (How do you put
three queens on a chess board such that no piece threatens another?)

7. Implement the symbol table (modules sym.c and sym.h of cint) as a
binary tree.

8. Implement the symbol table as a hash tree.

9. Assuming that a binary tree holds a list of symbols arranged alpha­
betically (as in the examples on page 366), write a function that prints
all of the symbols in alphabetic order. Hint: Use recursion.

10. Write a function that balances an unbalanced binary tree. The func­
tion should accept one argument, which is a pointer to the top of the
binary tree. How efficient is your algorithm?

11. Write a program to solve the following problem, called the traveling
salesman problem. A salesman wants to travel to five cities in such an
order that the total number of miles traveled is minimized. Using the
S-by-S multidimensional array shown below, which represents dis­
tances between the five cities, write a program that finds the shortest
route.

www.manaraa.com

13.8 Exercises

int distances [5] [5]
{

/* NY */ {O, 300,
/* Boston */ {300, 0,
/* Hartford */ {150, 150,
/* DC */ {400, 700,
/* Cleveland */ {500, 800,

}; /* NY, Bos,
*/

150,
150,
0,
500,
700,
Hart,

375

400, 500 },
700, 800 },
500, 700 },
0, 450 },
450, 0 }

DC, Cleve.

12. If N represents the number of cities in the traveling salesman problem,
how efficient is your algorithm in terms of operations per N? Note
that there is no known efficient solution for this problem. Problems
such as these are known as NP-complete.

13. Write a simulation of a grocery checkout process. Allow each change
of clerks, random length of checkout time, and keep track of queue
length and service times.

14. Write a simulation of a damped harmonic system:

15. Create a program to determine differences between two files.

16. Create a program to edit HTML files (web pages).

www.manaraa.com

A
The ANSI Runtime

Library
Until recently, each compiler manufacturer delivered its own unique li­
brary of runtime routines and there was little effort toward standardiza­
tion. This state of affairs wreaked havoc on programmers trying to write
portable code. There was no guarantee that a program using library func­
tions from one compiler manufacturer would still run when ported to an­
other machine. With ratification of the ANSI Standard, this situation
should improve.

The task of deriving a single set of routines, however, was no simple
matter. The ANSI Committee was faced with literally dozens of existing
functions, many with the same names but with different effects. One of the
committee's main goals was to break as little existing code as possible. The
result was a somewhat larger and less consistent library than anyone really
desired. Nevertheless, once you learn some of its subtleties and quirks, the
ANSI C library becomes a remarkably powerful tool.

The main source for the routines in the ANSI library is the UNIX oper­
ating system. Many of the functions supported by ANSI are exactly the
same as those supported by System V and BSD4.2, and others are very
similar. As of this writing, AT&T, in conjunction with the UNIX Standard
IEEE Committee, appears committed to bringing its library into accord
with the ANSI Standard.

www.manaraa.com

A.3 Synopses 377

A.1 Function Names

All library function names are reserved as external identifiers. Therefore,
you cannot define a name that matches a library name, even if you are
defining a function that performs the same operation. Likewise, all identi­
fiers beginning with an underscore are reserved for behind-the-scenes mac­
ros. Appendix D provides a complete list of reserved names.

A.2 Header Files

In addition to the functions themselves, the C runtime library comes with
a set of include files called header files. Every function is associated with
one or more header files that must be included wherever the function is
invoked. These files contain the declarations for any related functions,
macros, or data types needed to execute a set of library functions. Table
A-I lists the standard header files. Note that some of these header files
may not be available with your compiler if it is not ANSI-conforming.

The ANSI Standard guarantees that the header files are idempotent.
This means that multiple inclusions of the same header file will not have
adverse effects and you can include header files in any order.

A.3 Synopses

The form of each function and the header file it requires are provided
in a format called a synopsis. The synopsis format is taken from UNIX
documentation and has the following form:

#include header Jile
function-prototype
For example, the following is the synopsis for the function gets(),

which reads a string from standard input:

#include <stdio.h>
char *gets (char *s);

This tells you that you must include the header file <stdio.h> and that
gets() takes one argument that is a pointer to a char and returns a pointer
to a char. To use gets() in a program, you would include the line

#include <stdio.h>

in your source file. You do not need to declare gets() because any neces­
sary declarations are performed in the header file. The angle brackets en­
closing the filename inform the compiler to search for the header file in a
system-defined location. As long as your C compiler is installed as directed

www.manaraa.com

378 A: The ANSI Runtime Library

by the vendor, you should not need to worry about the reallocation of the
header files.

Header File

<assert.h>

<ctype.h>

<errno.h>

<{loat.h>

<limits.h>

<locale.h>

<math.h>

<setjmp.h>

<signal.h>

<stdarg.h>

<stddef.h>

<stdio.h>

<stdlib.h>

<string.h>

<time.h>

Table A-1: Header Files for the Runtime Library.

Associated Fundions

Diagnostic functions (currently just the assert() macro).

Character testing and mapping functions.

Defines several macros related to error reporting:
EDOM, ERANGE, and errno.

Defines a number of macros that describe the charac­
teristics of floating-point objects in the environment
(see Appendix B).

Contains parameter values that describe the execution
environment (see Appendix B).

The setlocale() function, which enables you to set locale
parameters.

Double-precision mathematics functions.

The setjmp() and longjmp() functions, which enable
you to bypass the normal function call and return dis­
cipline.

Functions that handle signals.

Functions and macros for implementing functions that
accept a variable number of arguments.

This is a new header file that contains definitions of six
macros: ptrdiff_t, size_t, NULL, wchar _t, offsetof, and
errno. These macros are also defined in any header file
declaring functions that use them.

110 functions.

General utility functions.

String manipulation functions.

Time manipulation functions.

It is also possible to declare a library function explicitly without refer­
ring to a header file. To declare gets(), for instance, you could write

extern char *gets (char *);

www.manaraa.com

A.4 Functions vs. Macros 379

However, this can be a dangerous practice for a couple of reasons.
First, the function you declare may refer to other functions or macros that
are defined in the header file. If you don't include the header file, the func­
tion may not work. Second, the library function may have a macro im­
plementation that runs faster than the real function. By declaring it as a
function, you force the system to use the function version, which makes
your program less efficient. For these reasons, we recommend that you
always include whatever header files are indicated in the synopsis.

A.4 Functions vs. Macros

As described in Chapter 11, it is often possible to implement a function
more efficiently as a macro. Most C compiler developers take advantage
of this capability by implementing many of the library functions as mac­
ros. However, because this introduces some potential side-effect problems,
the ANSI Standard enforces some restrictions to protect you. First, the
ANSI Standard ensures that in any macro implementation, an argument is
expanded once and only once. This avoids the pitfalls associated with side­
effect operators in the argument expression (see the Bug Alert on page
311). Second, the ANSI Standard guarantees that there is an actual func­
tion for each library function listed. This enables you to take the address
of any library function. (getcO and putcO are exceptions to both these
rules.)

In many cases, there exist both a function and a macro that perform
the same operation. By default, the macro gets executed because it is usu­
ally faster. If you want to execute the function instead, you can explicitly
#undef the macro. The following examples illustrate this principle.

Example 1 - Using the function as defined in the header file (it may be
a macro or it may be a function)

#include <stdio.h>

s = gets (s);

Example 2 - Forcing use of a function instead of a macro

#include <stdio.h>
#undef gets

s = gets(s);

www.manaraa.com

380 A: The ANSI Runtime Library

A.S Error Handling

Most library functions return a special value when an error occurs. The
error value differs from routine to routine and is listed in the description
of each individual function. The special macro NULL is often returned as
an error value for functions that return pointers. It is an implementa­
tion-defined null pointer constant. NULL is defined in all header files that
require it.

In some cases, in addition to returning an error value, a function also
assigns a special error code to a global variable (or macro) called errno.
errno is declared in the <errno.h> header file and has type into For most
implementations of C, each possible errno value is associated with an error
message that you can output with the perror() function. You can also as­
sign the error message to a string with the strerror() function.

A.6 Diagnostics

The C runtime library contains one header file and one macro for output­
ting diagnostics. In addition, there are several preprocessor symbols and
commands that can be utilized to print diagnostic information (see Chap­
ter 11). The header file is called <assert.h>. It defines a macro called assert
and refers to another macro called NDEBUG. NDEBUG, however, is not
defined by <assert.h>. In fact, if NDEBUG is defined when <assert.h> is
included, then all subsequent calls to assert() will have no effect. Hence,
NDEBUG provides a useful mechanism for turning off diagnostics, as
illustrated in the following example.

#define NDEBUG
#include <assert.h>
1* calls to assert() will have no effect *1

A.6.1 The assert() Function

#include <assert.h>
void assert(int expression);

According to the ANSI Standard, assert() must be implemented as a
macro. The assert() macro tests the value of expression. If it is nonzero, no
action is taken, and zero is returned. If expression equals zero, assert()
writes information about the program's current status to stderr and then
calls abort(). The diagnostic information contains the value of the expres­
sion, the current source file name, and the current line number. The latter
two values are taken from the preprocessor symbols _FILE_ and

www.manaraa.com

A.7 Character Handling 381

LINE. The assertO macro is used most frequently to test the status of
a function call. For instance,

/* If fopen() returns zero, send status
* information to stderr, and abort.
*/

assert (fp = fopen ("file", "r")) i

Note, however, that (openO will not even be invoked if NDEBUG is
defined.

A.7 Character Handling

There are two groups of character-handling functions, which are usually
implemented as macros. The first group, called character-testing (unctions,
checks to see whether the argument is a member of a particular set of
characters. The second group, called case-mapping (unctions, changes a
letter from uppercase to lowercase, or vice versa. These functions are not
ASCII-biased. They should work with any existing character code, in­
cluding EBCDIC and European codes. Note, however, that there is some
variation concerning how these functions operate, depending on what
character set is being used. In these cases, a minimum operation is defined
for programs operating in a C locale (see Section A.8 for more information
about locales).

A.7.1 Character-Testing Functions

All of the character-testing functions have a similar format. They accept
an int as the argument and return a nonzero value if the argument is a
member of a specified set of characters. Otherwise they return zero. If the
value of the argument cannot be represented in an unsigned char, the re­
sults are undefined. The generic synopsis is

#include <ctype.h>
int func_name(int c)i

Table A-2 lists all of the character-testing functions and the set of char­
acters for which they test membership.

www.manaraa.com

382

Function

isalnum{}

isalpba{}

iscntrl()

isdigit{}

isgrapb()

islower()

isprint()

ispunct()

isspace()

isupper()

isxdigit()

A: The ANSI Runtime Library

Table A-2: Character Testing Functions.

Membership Set

Alphabetic and digit characters (any character for
which isalpba() or isdigit() is true).

Alphabetic characters (any character for which isup­
per() or islower() is true, or any implementation de­
fined set of characters for which iscntrl(), isdigit(),
ispunct(), and isspace() are false. In the C locale, isal­
pba() is true only if islower() or isupper() is true).

Control characters.

Decimal digit characters.

All printable characters except space characters.

Lowercase letters or any implementation-defined sub­
set of characters for which iscntrl{}, isdigit(), ispunct(),
and isspace() are false.

All printing characters, including space.

All printing characters except a space and characters
for which isalnum() is true.

A space(' '), form feed ('\f'), newline ('\n'), carriage
return ('\r'), horizontal tab ('\t'), or vertical tab ('\v').

Uppercase letter or any implementation-defined subset
of characters for which iscntrl{}, isdigit(), ispunct(),
and isspace{} are false.

Hexadecimal digits.

A.7.2 Character Case-Mapping Functions

There are two case-mapping functions, one that changes a letter from up­
percase to lowercase and another that changes a letter from lowercase to
uppercase. Both functions take an int argument and return an into If the
argument is not relevant (i.e., it is not a letter or it is already the case to
which it is being converted), it is returned unchanged. The synopses for the
two functions are

and

#include <ctype.h>
int tolower(int c);

#include <ctype.h>
int toupper(int c);

www.manaraa.com

A.8 Setting Locale Parameters 383

A.8 Setting Locale Parameters

Although ANSI is a U.S. organization, the C Standards Committee en­
deavored to make the C language as universal as possible. Among the
problems it confronted were

• Different alphabets and hence different character sets.

• Different collating sequences in the character set (the numeric
codes for alphabetic characters are not always ordered as they are
in ASCII or EBCDIC).

• Different methods of representing decimal points (a period in the
U.S., but a comma in many European countries).

• Different ways of displaying times and dates.

A large part of the problem was solved by putting locale-defined be­
havior into library functions rather than the language itself. For example,
the isalpha() function can return different results depending on what char­
acter set is being used. This flexibility, however, raised another problem. If
a library function has different interpretations based on locale, how can
you force one particular interpretation? Also, how can you find out dy­
namically, while a program is running, which locale-specific behavior the
program will exhibit?

The ANSI Committee solved both of these problems by inventing a
function called setlocale(), which enables you to select a specific locale set­
ting or to discover the current locale setting. By changing the locale set­
ting, you can immediately change the action of all relevant functions. Note
that these changes occur at runtime, not at compile time.

The header file associated with setlocale() is <locale.h>. This file con­
tains definitions of at least six macros that enable you to select a particular
part of the C language that you want to affect with the new locale setting:

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MONETARY

The entire language

The strcoll() function

All of the character-handling functions

The monetary formatting information re­
turned by the locale_conv() function

The decimal point character for the for­
matted I/O and string conversion functions

The strftime() function

Implementations may define additional macros that begin with LC_. In
addition to the macros, the locale.h header file also defines a structure type
named lconv. The elements of this structure are described in Section A.8.l.

www.manaraa.com

384 A: The ANSI Runtime Library

A.S.1 The setlocaleO Function

#include <locale.h>
char *setlocale(int category, const char *locale);

The setlocaleO function sets or queries locale-specific behavior for the part
of the C language specified by category. category should be one of the
macros defined in locale.h.

If locale is a null pointer, the function is interpreted as a query. It re­
turns a string that represents the current locale setting for the specified
category. The only ANSI-defined locale is "C," which represents the
minimal environment for C translation. Implementations are free to define
other locale strings.

You can find out what the implementation-defined locale is by entering
a null string as the second parameter. In this case, setlocaleO returns a
pointer to the string associated with the specified category. The program's
current locale is not changed.

If locale is not a null pointer, the function is interpreted as a request to
change the locale setting for the specified category. If the request can be
honored, setlocaleO returns the locale argument. If the request cannot be
honored, setlocaleO returns a null pointer.

At program start-up, the equivalent of

setlocale(LC_ALL, "e");

is executed.

A.S.2 The localeconvO Function

#include <locale.h>
struct lconv *localeconv (void);

The localeconv() function returns a pointer to a structure of type lconv
that contains appropriate values for formatting numbers and monetary
values under the current locale. The lconv structure contains the members
shown in Table A-3. Any member with type char * (except decimal-point)
can point to a null string, indicating that the locale does not define a for­
mat for this object. Likewise, any member with type char can have the
value CHAR_MAX to indicate that there is no locale-defined value for
that member.

www.manaraa.com

A.8 Setting Locale Parameters 385

Table A-3: lconv Structure.

Structure Member

char *decimal-point

char *thousands_sep

char *grouping

char *currency_symbol

char *mon_decimal-point

char *mon_grouping

char *negative sign

Meaning

The decimal-point character used to
format nonmonetary values.

The character used to separate groups of
digits (to the left of the decimal point)
for nonmonetary values.

A string whose elements indicate the size
of each group of digits in a nonmonetary
value. The string can contain characters
with the following values:

integer value The number of digits
that compnse the
group.

o Use the previous
element to determine
the number of digits
to use for the current
group.

CHAR_MAX No further grouping
is to be performed.

The international currency symbol used
by the current locale. The first three
characters indicate the currency symbol
as specified by ISO 4217. The fourth
character defines the character used to

separate the currency symbol from the
monetary unit.

The local currency symbol used by the
current locale.

The decimal point used to format mone­
tary values.

The character used to separate groups of
digits (to the left of the decimal point)
for monetary values.

A string whose elements indicate the size
of each group of digits in a monetary
value (see the description of grouping).

The string used to indicate a negative
monetary value.

www.manaraa.com

386

Structure Member

char frac_digits

char p_cs-precedes

char n_cs-precedes

char p_sign-posn

A: The ANSI Runtime Library

Table A-3: (continued)

Meaning

The number of fractional digits (to the
right of the decimal point) that are dis­
played in an internationally formatted
monetary value.

The number of fractional digits (to the
right of the decimal point) that are dis­
played in a monetary value.

Set to 1 if the currency symbol precedes
the monetary value when the value is
positive, or to 0 if the symbol follows the
monetary value.

Set to 1 if a space separates the currency
symbol from a positive monetary value,
or to 0 if there is no space.

Set to 1 if the currency symbol precedes
the monetary value when the value is
negative, or to 0 if the symbol follows
the monetary value.

Set to 1 if a space separates the currency
symbol from a negative monetary value,
or to 0 if there is no space.

Indicates where the positive sign is posi­
tioned for monetary values.

Indicates where the negative sign is posi­
tioned for monetary values. p_sign-posn
and n_sign-posn can have the following
values:

o Parentheses surround the value
and the currency symbol to in­
dicate the sign.

1 The sign symbol precedes the
value and currency symbol.

2 The sign symbol follows the
value and currency symbol.

3 The sign symbol immediately
precedes the currency symbol.

4 The sign symbol immediately
follows the currency symbol.

www.manaraa.com

A.9 Mathematics 387

A.9 Mathematics

All the math functions require inclusion of the header file <math.h>. This
file contains a definition of the HUGE_VAL macro, which defines the
value returned by all functions when the true result is too large to be rep­
resented.

There are two types of errors that can occur: domain errors and range
errors. A domain error occurs when an input argument to the function is
outside the legal domain for argument values. For example, it is a domain
error to pass a negative number to the sqrt() function. In this case, the
function returns an implementation-defined value and sets errno equal to
the value of EDOM, which is an implementation-defined nonzero integer.

A range error occurs when the result of the function cannot be repre­
sented in a double. In this case, errno receives the value of the macro
ERANGE, which again is an implementation-defined nonzero value. If a
range error occurs because of an underflow (the value is too small), the
function returns zero. If an overflow occurs, then the function returns the
value of the macro HUGE_VAL. Generally, HUGE_VAL is the largest
value that can be stored in a double.

Note that EDOM and ERANGE are defined in <errno.h>, which must
be included if you want to check these values.

The math functions are divided into several groups:

• Trigonometric and Hyperbolic Functions

• Exponential and Logarithmic Functions

• Miscellaneous Math Functions

All of the math functions operate on double values. However, the
ANSI Committee plans to add equivalent functions for floats and long
doubles in the future. The names of these new functions will be the same
as the current names with an f or I appended. Therefore, you should con­
sider these future names as reserved to avoid conflicts at a later date.

The functions ecvt(), (cvt(), and gcvt(), which are available on many
systems, were not included in the ANSI Standard because the same func­
tionality can be obtained through sprintf{}.

A.9.1 Trigonometric and Hyperbolic Functions

With one exception (atan2()), all of the trigonometric and hyperbolic func­
tions take a double argument and return a double result. The general syn­
OpSIS IS

#include <rnath.h>
double func_name (double x);

These functions are described in Table A-4 (the atan2() function IS

listed separately). The trigonometric functions use radians, not degrees.

www.manaraa.com

388

For the atan20 function, the synopsis is:

#include <math.h>
double atan2(double y, double x)i

A: The ANSI Runtime Library

The atan20 function returns the principal value of the arc tangent of
y/x, using the signs of both arguments to determine the quadrant of the
return value. Viewed in terms of a Cartesian coordinate system, the result
is the angle between the positive x-axis and a line drawn from the origin
through the point (x,y). The result is in radians and lies between -1t and 1t.

A domain error occurs if both arguments equal zero.

A.9.2 Exponential and Logarithmic Functions

The following library routines perform exponential and logarithmic func­
tions. Each of these functions returns a double.

A.9.2.1 The expO Function

#include <math.h>
double exp (double x) i

The expO function returns the exponential function of x. If the magnitude
of x is too large, a range error occurs.

A.9.2.2 The frexpO Function

#include <math.h>
double frexp (double value, int *exp) i

The (rexpO function converts value into a fraction multiplied by a power
of 2. The fractional part, which is between 0.5 and 1.0, is returned by the
function and the exponential value is stored in the object pointed to by
expo If the original value of value is zero, then both value and the object
pointed to by exp are assigned the value zero.

A.9.2.3 The IdexpO Function

#include <math.h>
double ldexp (double x, int exp) i

The Idexp() function multiplies the value x by 2 to the power of exp and
returns the result. If the resulting value is too large to fit in a double, a
range error may occur.

www.manaraa.com

A.9 Mathematics 389

Table A-4: Trigonometric and Hyperbolic Functions.

Function Operation

acos()

asin()

atan()

cos()

cosh()

sin()

sinh()

tan()

tanh()

Returns the principal value of the arc cosine of x. The result
lies in the range 0 through n. A domain error occurs if x is
less than -lor greater than 1.

Returns the principal value of the arc sine of x. The result is
in the range -n12 through n12. A domain error occurs if x is
less than -lor greater than 1.

Returns the principal value of the arc tangent of x. The re­
sult is in the range -n12 through n12.

Returns the cosine of x, where x is measured in radians. If x
is very large, the result may not be meaningful.

Returns the hyperbolic cosine of x. A range error occurs if
the magnitude of x is too large.

Returns the sine of x, where x is measured in radians. If x is
very large, the result may not be meaningful.

Returns the hyperbolic sine of x. A range error occurs if the
magnitude of x is too large.

Returns the tangent of x, measured in radians. If x is very
large, the result may not be meaningful.

Returns the hyperbolic tangent of x. A range error occurs if
the magnitude of x is too large.

A.9.2.4 The logO Function

#include <math.h>
double log(double x)i

The log() function returns the natural logarithm of x. If x is negative, a
domain error occurs. If x is zero, a range error may occur.

A.9.2.5 The log100 Function

#include <math.h>
double loglO(double x)i

The log10() function returns the base-ten logarithm of x. If x is negative, a
domain error occurs. If x is zero, a range error may occur.

www.manaraa.com

390 A: The ANSI Runtime Library

A.9.2.6 The modf() Function

#include <math.h>
double modf(double value, double *iptr);

The modf() function divides value into its integral and fractional parts,
each of which has the same sign as value. The fractional part is returned
and the integral part is stored in the object pointed to by iptr.

A.9.2.7 The powO Function

#include <math.h>
double pow(double x, double y);

The pow() function returns the value of x raised to the power of y. A do­
main error occurs if x is zero and y is less than or equal to zero, or if x is
negative and y is not an integer. If x is zero and y is positive, the result is
zero. If x is nonzero and y is zero, the result is approximately 1.0. If x is
negative and y is an integer, then

pow(x, y)

is computed as

pow (-x, y)

if y is even, and as

-pow (-x, y)

if y is odd. If the result cannot be stored in a double, a range error may
occur.

A.9.2.8 The sqrtO Function

#include <math.h>
double sqrt (double x);

The sqrt() function returns the nonnegative square root of x. If x is nega­
tive, a domain error occurs.

A.9.3 Miscellaneous Math Functions

A.9.3.1 The ceilO Function

#include <math.h>
double ceil (double x);

The ceil() function returns the smallest integer not less than x. That is, it
rounds toward positive infinity.

www.manaraa.com

A.10 Nonlocal Jumps

A.9.3.2 The fabsO Function

#include <math.h>
double fabs(double x)i

The (absO function returns the absolute value of x.

A.9.3.3 The floorO Function

#include <math.h>
double floor(double x)i

391

The floorO function returns the largest integer not greater than x. That is,
it rounds toward negative infinity.

A.9.3.4 The fmodO Function

#include <math.h>
double frnod(double x, double Y)i

The (modO function returns the floating-point remainder of x divided by
y. The result has the same sign as x. (Note that technically (modO returns
the remainder, not the modulus, since the sign agrees with x, not with y.)
If the quotient of x/y cannot be represented, the behavior is undefined. If y
is zero, the function returns x.

A.10 Nonlocal Jumps

The C library contains two functions-setjmp() and longjmp()-that en­
able you to bypass the normal functional call and return procedures. This
is particularly useful for dealing with unusual conditions in low-level func­
tions.

The header file for these functions is <setjmp.h>, which defines a data
type called jmp_bu(. jmp_bu(is an array capable of holding the informa­
tion needed to restore a calling environment.

setjmp() is called once to initialize a jmp_bu(variable with the current
values of the machine's state (e.g., the values of the stack pointer and
frame pointer and the registers). When longjmp() is called, the machine is
reset to the state contained in the jmp_bu(array. This causes longjmp() to
return to the place where setjmp() was last called with the same jmp_bu(
variable.

www.manaraa.com

392 A: The ANSI Runtime Library

A.10.1 The setjmpO Function

#include <set jmp.h>
int setjmp(jmp_buf env);

The setjmp() function saves the current environment in its jmp_buf argu­
ment for later use by the longjmp() function. When setjmp() returns from
an initialization call, it returns zero. When setjmp() returns from a
longjmp() call, it returns a nonzero value.

In some implementations, a setjmp() call can appear only in a compari­
son expression, in which the returned value is compared to an integral
constant expression.

A.10.2 The /ongjmpO Function

#include <setjrnp.h>
void longjrnp(jrnp_buf env, int val);

The long;mp() function restores the environment saved by the most recent
call to set;mp() with the same env argument. If there has been no such call,
or if the function containing the call to setjmp() has terminated (i.e.,
through a return statement), the behavior is undefined.

After a successful long;mp() call, all accessible objects have the same
value they had immediately prior to the longjmp() call. The only excep­
tions are dynamic variables that are not volatile and have been changed
between the calls to setjmp() and longjmp(). The values of these objects are
indeterminate.

If longjmp() is invoked from a nested signal handler (that is, from a
function invoked as a result of a signal raised during the handling of an­
other signal), the behavior is undefined. In all other interrupt and signal­
handling situations, longjmp() should execute correctly.

A.10.3 Example

setjmp() and longjmp() are typically used to recover from an error deep in
the program structure by returning to an earlier state at which the pro­
gram was functioning properly. In the following example, we initialize
main_loop at the beginning of the program. Then, whenever error() is in­
voked, the program returns to this initial state.

www.manaraa.com

A.11 Signal Handling

#include <setjrnp.h>

rnain()
{

if (setjrnp(main_loop »

printf ("Restarting. \n");
for (;;)
{

printf "cint> II);

/* loop body */

void error(char *s)
{

printf (" Error %s\n", s);
longjrnp (main_loop);

393

Note that the "Restarting" line is not printed the first time setjmp() is
called because setjmp() returns zero when it is explicitly invoked. When
setjmp() returns via a longjmp() call, however, it returns a nonzero value.

A.11 Signal Handling

The C runtime library contains two functions for handling various condi­
tions that may arise during program execution. These functions are a sub­
set of those available in the UNIX library. Both functions make use of a
number of macros declared in the header file <signal.h>. The macros and
their meanings are listed in Table A-S. There is no guarantee, however,
that an implementation will use any of these signals (except as the result of
explicit calls to raise()). In addition to the listed names, the ANSI Commit­
tee has also reserved all names that begin with SIG for possible future use.

A.11.1 The signa/O Function

#include <signal.h>
void (*signal (int sig, void (*func) (int») (int);

The fune argument to signal() selects one of three methods for subsequent
handling of signal number sig. If the argument is SIG_DFL, then the signal
is handled in the default manner. If the argument is SIGjGN, the signal
will be ignored. Otherwise, fune should point to a function that is invoked
when the signal occurs.

www.manaraa.com

394 A: The ANSI Runtime Library

Table A-5: Signal-Handling Macros.

Macro Meaning

SIGABRT Abort Signal - Expands to a positive integral constant ex­
pression that is the signal number corresponding to an ab­
normal termination, such as that indicated by the abort()
function.

SIG_DFL Same as SIGjGN, except that it specifies that the signal is
to be handled in an implementation-defined manner.

SIG_ERR Same as SIGjGN except that it specifies that the call to sig­
nal() is erroneous.

SIGFPE Floating-Point Exception Signal-Expands to a positive inte­
gral constant expression that is the signal number corre­
sponding to an erroneous arithmetic operation, such as zero
divide, or an operation resulting in overflow.

SIGjGN Expands to a constant expression of type "pointer to func­
tion returning void." It is used as an argument to the signal()
function, in place of a function address. to specify that a
given signal should be ignored.

SIGILL Illegal Instruction Signal-Expands to a positive integral
constant expression that is the signal number corresponding
to detection of an invalid function image.

SIGINT Interrupt Signal-Expands to a positive integral constant
expression that is the signal number corresponding to receipt
of an interactive attention signal.

SIGSEGV Segment Violation Signal-Expands to a positive integral
constant expression that is the signal number corresponding
to an invalid access to storage.

SIGTERM Termination Signal-Expands to a positive integral constant
expression that is the signal number corresponding to a ter­
mination request sent to the program.

Even if func points to a signal-handling function, the system will still
execute the equivalent of

signal (sig, SIG_DFL);

before invoking
(*func) (sig);

The function func may terminate in several ways, including calls to
abort(), exit(), or longjmp(). If it returns through a return statement, and
the return value is SIGFPE or any other implementation-defined value

www.manaraa.com

A.12 Variable Argu ment Lists 395

that corresponds to an exception, the behavior is undefined. Otherwise,
the program resumes execution at the point it was interrupted. If the re­
quested change can be honored, signai() returns the value of fune. Other­
wise, it returns SIC_ERR and sets errna to indicate an error.

The functions in the C runtime library are not guaranteed to be reen­
trant, so they may not be used reliably with a signal handler that returns.

At program start-up, the equivalent of

signal (sig, SIG_IGN)

may be executed for some signals in an implementation-defined manner.
For all other signals the equivalent of

signal (sig, SIG_DFL);

is executed.

A.11.2 The raiseO Function

#include <signal.h>
int raise(int sig);

The raise() function sends the signal sig to the executing program. If suc­
cessful, raise() returns zero: if unsuccessful, it returns a nonzero value.

A.12 Variable Argument Lists

The C library contains several tools for writing functions that can accept a
variable number of arguments in a portable fashion. Without using these
tools, you need to know the stack implementation of a particular compiler
to write a variable argument function. The macros and function discussed
in this section enable you to avoid the compiler internals.

To declare a function capable of accepting a variable number of argu­
ments, use the" ... " prototype syntax. For example, the following defines a
function fl () that will always be passed at least two arguments, but might
be passed more.

void fl (int argl, int arg2, ...)
{

Within fl (), you would use the variable argument macros and func­
tions to process all of the arguments to fl (). Wherever fl () is invoked,
there must be a function allusion of the form

void f1 (int, int, ...);

The <stdarg.h> file contains definitions of two macros, one function,
and one data type. The macros are va_start, va_arg, the function is

www.manaraa.com

396 A: The ANSI Runtime Library

va_end, and the type is va_list. va_list defines an array type suitable for
holding information needed by va_arg and va_macro. In the following
discussion, the name of the array with this type is ap.

A.12.1 The va_start Macro

#include <stdarg.h>
void va_start (va_list ap, parmN);

The va_start macro initializes the array ap for subsequent use by va_arg
and va_end. It should be invoked before any arguments are processed. The
parmN argument should be the name of the rightmost argument before
the three dots. Continuing our example of (1 (), the va_start invocation
would be

va start (ap, arg2);

A.12.2 The va_arg Macro

#include <stdarg.h>
type va_arg(va~ist ap, type);

The va_arg macro expands to an expression that has the type and value of
the next argument. It should be invoked once for each argument. The ar­
gument ap should be the same argument initialized by the va_start macro.
The parameter type should be the type of the argument (after default con­
versions to int, unsigned int, or double). For example, if all the arguments
to fl() are integers, you would write

argl = va_arg(ap, int);
arg2 = v~arg(ap, int);

to get the value of each argument. If the type specified in va_arg does not
match the actual argument type, the behavior is undefined.

A.12.3 The va_endO Function

#include <stdarg.h>
void va_end(va_list ap);

The va_end() function should be invoked after all of the arguments have
been processed to facilitate a normal return from the function. If it is not
invoked, the behavior is undefined.

www.manaraa.com

A.13 1/0 Functions 397

Program
A-1

A.12.4 Example

The following function accepts from 1 to 20 integer arguments, which it
processes and stores in elements of the array args[J. The first argument
specifies the total number of arguments in the call.

include <stdarg.h>
#define MAX_ARGS 20

void fl(int arg_num, . ..)
{

va_list ap;
int arg[MAX_ARGS];
int array_element = 1;

va_start< ap, arg-pum);
while (arg_num)

arg[array_element++} va_arg(ap, int);
va_end (ap) i

A.13 I/O Functions

This section describes each standard 110 function in detail. See Chapter 12
for more general information about how to perform 110 using the C li­
brary.

A.13.1 The c/earerrO Function

#include <stdio.h>
void clearerr(FILE *stream);

The clearerr() function clears the end-of-file and error indicators associ­
ated with the specified stream. Use ferror() and feaf() to see whether these
indicators are set. The only other time these indicators are cleared is when
the file is opened or when a rewind() function is executed. The clearerr()
function does not return a value.

A.13.2 The fcloseO Function

#include <stdio.h>
int fflush(FILE *stream);

The fclose() function closes the file associated with the specified stream
and disassociates the stream from the file. Before closing the file, fclose()
flushes the associated buffers. If the buffers had been automatically allo-

www.manaraa.com

398 A: The ANSI Runtime Library

cated, they are deallocated. Whenever the exit() function is invoked, it
calls fclose() for any open streams.

The fclose() function returns zero if it successfully closes the stream, or
nonzero if an error occurs. If the stream is already closed, fclose() returns
nonzero.

On some operating systems, it is impossible to create a file without
writing something to it. Programs that rely on a file being created, there­
fore, should write something to the associated stream before closing it.

A.13.3 The feofO Function

#include <stdio.h>
int feof(FILE *stream)i

The feof() function tests the end-of-file indicator for the specified stream
to see whether an end-of-file was encountered in a previous read or write
operation. If the indicator is set, feof() returns a nonzero value; otherwise
it returns zero. Note that feof() does not reset the error indicator so that
repeated calls to feaf() will report the same condition over and over. To
reset the error indicator, use clearerr().

A.13.4 The ferrorO Function

#include <stdio.h>
int ferror(FILE *stream)i

The ferror() function tests the error indicator for the specified file to see
whether an error has occurred on a previous read or write operation. If the
indicator is set, ferrar() returns a nonzero value; otherwise it returns zero.
Note that ferror() does not reset the error indicator so that repeated calls
to ferror() will report the same error over and over. To reset the error in­
dicator, use clearerr().

A.13.5 The fflushO Function

#include <stdio.h>
int fflush(FILE *stream)i

The fflush() function empties the buffer associated with the specified
stream, causing any data in the buffer to be written to the destination file
or device. The stream remains open. If the call is successful, fflush() re­
turns zero; otherwise it returns a nonzero value.

www.manaraa.com

A.13 1/0 Functions 399

A.13.6 The fgetc() Function

#include <stdio.h>
int fgetc(FILE *stream)i

The fgetcO function fetches the next character from the specified stream,
returns the value after converting it to an int, and advances the associated
file position indicator. Successive calls to fgetcO return successive charac­
ters from the stream. If an end-of-file is encountered, or if an error occurs,
fgetcO returns EOF. Use feom or ferrorO to determine whether an error
or end-of-file occurred.

A.13.7 The fgetpos() Function

#include <stdio.h>
int fgetpos(FILE *stream, fpos_t *pos)i

The fgetposO function stores the current file position indicator in the ob­
ject pointed to by pos. It is similar to ftellO, except that the file position
indicator value is stored in an object of type fpos_t, rather than being re­
turned as a long into The value stored contains implementation-defined
information that can only be used by fsetposO to reposition the file posi­
tion indicator to its position at the time of the fgetposO call. See the de­
scription of fsetposO for more information.

If successful, fgetposO returns zero. On a failure, fgetposO returns a
nonzero value and sets errno to an implementation-defined value.

A.13.8 The fgets() Function

#include <stdio.h>
char *fgets(char *s, int n, FILE *stream)i

The fgetsO function reads characters from the specified stream and assigns
them to the array identified by s. The stream must be open with read ac­
cess. Characters are read until a newline or end-of-file is encountered, or
until n - 1 characters have been fetched, whichever comes first. Unlike the
getsO function, fgetsO includes the terminating newline in the array. fgetsO
then appends a null character after the last character assigned, so that the
maximum number of array elements used is n.

If successful, fgetsO returns the pointer s. If an end-of-file is encoun­
tered before any characters are read, fgetsO leaves the array untouched
and returns a null pointer. If an error occurs, a null pointer is returned,
but the contents of the array are unpredictable.

www.manaraa.com

400

A.13.9 The fopen() Function

#include <stdio.h>
FILE *fopen(const char *filename,

const char *mode);

A: The ANSI Runtime Library

The fopen() function opens a file identified by filename and associates a
stream with the file. The second argument is a pointer to a character string
that identifies the file access type. Table A-6 shows the legal values for the
argument mode.

Many of these access types were invented by the ANSI Committee, so
they may not be implemented on older compilers. The traditional access
types, documented in K&R, are "r", "w", and "a". The corresponding
update modes, "r+", "w+", and "a+", have: also been in existence for
some time. The types for accessing binary data (those with a b in them) are
new and reflect ANSI's efforts to develop a consistent library of functions.
Formerly, 110 to binary conversion was performed through a set of
UNIX-derived functions that paralleled the standard text 110 functions.
Now they are merged into one group.

The "ab" , "ab+", and "a+b" access modes may initially position the
file position indicator beyond the last data written, due to null padding.
The ANSI Standard also leaves it open for compilers to support additional
access modes beyond the ones listed here.

Opening a file with one of the append modes (" a", "a+", "ab", or
"a+b") forces all subsequent writes to occur at the current end-of-file, re­
gardless of previous calls to fseek(). After each write operation, the file
position indicator is repositioned to the end of the file and the buffer is
flushed.

Opening a file in read mode (where r is the first character of the mode
argument) fails if the file does not exist or cannot be read.

One peculiarity of the update modes (which stems from the fact that
110 is buffered) is that you cannot write to a file and then read from it, or
vice versa, without an intervening fseek(), fsetpos(), rewindO, or fflushO
call (unless the read or write operation encounters an end-of-file).

The fopenO function returns a pointer to a structure of type FILE. This
pointer, called a file pointer, is then used to access the file in subsequent
110 operations. If an error occurs while opening the file, fopenO returns a
null pointer.

www.manaraa.com

A.13 1/0 Functions 401

Table A-6: The fopenO Modes.

Mode Meaning

"r" Open an existing text file for reading.

"w" Create a new text file for writing or truncate an ex­
isting file.

"a" Open a text file in append mode; writing to the file
occurs at end-of-file marker.

"rb" Open a binary file for reading.

"wb" Create a new binary file for writing or truncate an
existing binary file.

"ab" Open or create a binary file in append mode; writing
occurs at end-of-file marker.

"r+" Open an existing text file for reading and writing.

"w+" Create a new text file for reading and writing or
truncate an existing file.

"a+" Open an existing file or create a new one in append
mode; writing occurs at end-of-file.

"r+b" or "rb+" Open a binary file for reading and writing.

"w+b" or "wb+" Create a new binary file for writing or truncate an
existing binary file.

"a+b" or "ab+" Open an existing binary file or create a new one for
reading and writing in append mode; writing occurs
at end-of-file.

A.13.10 The fprintfO Fundion

#include <stdio.h>
int fprintf(FILE *stream, const char *format, ...

} ;

The fprintf() function enables you to send formatted output to a file. This
function is equivalent to printf(), except that it takes one additional argu­
ment, stream, which lets you specify a stream (the print() function auto­
matically writes to the standard output stream stdout}. See the description
of printf() for more information.

www.manaraa.com

402 A: The ANSI Runtime Library

A.13.11 The fputeO Function

#include <stdio.h>
int fputc(int c, FILE *stream)i

The fputc() function writes a single character to the specified stream and
advances the associated file position indicator. Note that the character is
passed as an int, but fputc() converts it to an unsigned char before output­
ting it. fputc() returns EOP if an error occurs; otherwise it returns the
character written.

The ANSI Standard guarantees that fputc() will not be implemented as
a macro. putc() is an equivalent function that may be implemented as a
macro. See Chapter 12 for more information about putc() and fputc().

A.13.12 The fputsO Function

#include <stdio.h>
int fputs(const char *s, FILE *stream)

The fputs() function writes the array identified by the pointer s to the
specified stream. Characters from the array are written up to, but not in­
cluding, the terminating null character. Note that fputs() does not insert a
newline as puts() does. Also note that the string must have a terminating
null character or fputs() will output successive bytes from memory indefi­
nitely. If successful, fputs() returns zero; otherwise it returns a nonzero
value.

A.13.13 The freadO Function

#include <stdio.h>
int fread(void *ptr, size_t size, int nelem,

FILE *stream)i

The fread() function is used to read a block of binary or text data into an
array. The array is identified by ptr. The argument nelem specifies the
number of elements to read, and size specifies the size of each element in
bytes. Normally, the size is computed by using the sizeof operator. For
example,

fread(arr, sizeof(*arr), 100, fp)i

reads 100 elements from the stream identified by fp and stores the results
in an array called arr. The array must be large enough to hold the data.

The freadO function concludes when it reads in the specified number of
bytes, it encounters an end-of-file, or a read error occurs. In all three cases,
fread() returns the number of bytes read. If the returned value is less than
the number of bytes specified in the call, use ferror() or feof() to determine
why fread() ended prematurely. After a fread() call, the file position indica-

www.manaraa.com

A.13 I/O Functions 403

tor is positioned just after the last byte read. You can reposition it with an
fseekO or rewind() call.

A.13.14 The freopenO Function

#include <stdio.h>
FILE *freopen(const char *filename,

const char *mode, FILE *stream);

The freopenO function is used to associate an existing stream with a dif­
ferent file. Normally it is used to redirect the standard streams, stdin,
stdout, and stderr. First, freopenO closes the file associated with the
stream; then it opens the file identified by filename and associates the
stream to it. The mode argument serves the same role as in an fopen()
function. If freopenO encounters an error, it returns a null pointer; other­
wise it returns the value of the file pointer (the third argument).

A.13.15 The fscanf() Function

#include <stdio.h>
int fscanf(FILE *stream, const char * format , '");

The fscanf() function enables formatted data to be read into variables. It is
equivalent to scanf(), except that it takes one additional argument, stream,
which lets you specify an input stream (the scanf() function automatically
reads from stdin). See the description of scanf() for more information.

A.13.16 The fseekO Function

#include <stdio.h>
int fseek(FILE *stream, long offset, int ptrname

) ;

The fseekO function enables you to move the file position indicator in or­
der to perform random access on a file. The offset refers to the number of
bytes from a fixed position specified by ptrname. ptrname can have one of
three values represented by macros defined in <stdio.h>:

SEEK_SET Offset from the beginning of the file.

SEEK_CUR Offset from the current value of the file position indica­
tor.

SEEK_END Offset from the end of the file.

Note that the offset can be negative. However, if you attempt to move
the file position indicator before the beginning of the file, the results are
unpredictable.

www.manaraa.com

404 A: The ANSI Runtime Library

The fseek() function has somewhat different semantics depending on
whether the stream is open in binary or text mode. For binary streams, the
name SEEK_END may not have meaning. For text streams, ptrname must
be SEEK_SET and the offset must be either zero or a value returned by a
previous call ftell().

The fseek() function undoes the effects of an ungetc() function. It also
resets the end-of-file flag. fseek() returns zero if it is successful; if unsuc­
cessful, it returns a nonzero value.

A.13.17 The fsetposO Function

#include <stdio.h>
int fsetpos(FILE *stream, const fpos_t *pos);

The fsetpos() function is designed to be used in conjunction with fgetpos()
to move the file position indicator to the spot specified by the object
pointed to by pos. pos must be a value returned by an earlier call to fget­
pos(). The fgetpos() and fsetpos() functions should be used instead of
ftell() and fseek() when the file position indicator value is too large to fit in
a long into The fpos_t data type should be defined by each implementation
to be large enough to hold the largest possible file position indicator value.

The fsetpos() function clears the end-of-file flag for the specified stream
and undoes the effects of any previous calls to ungetc() on the same
stream. After an fsetpos() call, the next operation on the stream can be
either input or output.

If successful, fsetpos() returns zero. If it fails, fsetpos() returns a nonz­
ero value and sets errno to an implementation-defined nonzero value.

A.13.18 The fieI/O Function

#include <stdio.h>
long ftell(FILE *stream);

The ftell() function returns the current value of the file position indicator.
For binary streams, this is the number of bytes from the beginning of the
file. For text streams, ftell() returns an implementation-defined value that
is suitable for use as an offset value in an fseek() function. Using the value
in an fseek() call repositions the file position indicator to its position at the
time of the ftell{) call.

The ftell() function can fail for at least two reasons:

• The stream is associated with a terminal, or other file type, for
which the concept of a file position indicator is meaningless.

• The current value of the file position indicator cannot be repre­
sented in a long int (see the description of fsetpos()).

www.manaraa.com

A.13 1/0 Functions 405

If either of these failures occurs, ftellO returns -1 L and sets errna to an
implementation-defined nonzero value.

A.13.19 The fwriteO Function

#include <stdio.h>
int fwrite(const void *ptr, size_t size,

size_t nmemb, FILE *stream);

The fwriteO function writes the array pointed to by ptr to the specified
stream. It writes nmemb elements, where each element is size bytes long.
Normally, size is computed by using the sizeof operator. For example,

fwrite(arr, sizeof(*arr) , 100, s);

writes 100 elements from array arr to stream s. Note that fwriteO contin­
ues fetching elements from the array until nelem elements have been read,
even if this means going past the end of the array. The size of the array
must be at least as long as nelem times size. After the fwriteO call has
completed, the file position indicator is positioned just after the last char­
acter written. fwriteO does not modify the array in any way.

fwrite() returns the number of elements written. Assuming no error oc­
curs, this will be the same as nmemb.

A.13.20 The getcO Function

#include <stdio.h>
int getc(FILE *stream);

The getcO function reads the next character from the specified stream and
returns it as an into getcO is equivalent to fgetcO except that it may be im­
plemented as a macro instead of a function. If the next character in the
stream is an end-of-file, or if an error occurs during the read operation,
getcO returns EOF. Use FerrarO or fetafO to determine whether an end-of­
file or error occurred.

A.13.21 The getcharO Function

#include <stdio.h>
int getchar(void);

The getcharO function is equivalent to

getc(stdin)

which is, in fact, how it is implemented by most compilers. It returns the
next character from the standard input stream, or EOF if an end-of-file or
error occurs. Use ferrarO or feafO to determine whether an error or end­
of-file occurred.

www.manaraa.com

406

A.13.22 The getsO Function

#include <stdio.h>
char *gets(char *s);

A: The ANSI Runtime Library

The gets() function reads characters from the standard input stream (stdin)
and assigns them to the character array identified by s. Characters are read
and assigned until a newline or end-of-file is encountered. gets() is similar
to

fgets(s, n , stdin)

where n is a large number. Note, however, that unlike fgets(), gets() does
not allow you to specify a maximum number of characters to read. gets()
and fgets() also differ in the way they handle newlines. If gets() ends by
reading a newline, it absorbs the newline (i.e., positions the file position
indicator after the newline) but does not assign the newline to the array. In
contrast, fgets() includes the newline in the array. Both gets() and fgets()
append a null character after the last character assigned to the array.

If an end-of-file is encountered before any characters are read, gets() re­
turns a null pointer and leaves the array untouched. If an error occurs
during the read operation, a null pointer is returned and the contents of
the array are unpredictable. Otherwise, if gets() concludes successfully, it
returns s.

A.13.23 The perrorO Function

#include <stdio.h>
char *perror(const char *s) ;

The perrar() function returns an error message corresponding to the value
of errna. If s is not a null pointer, perror() writes the string pointed to by s
to stderr, then writes a colon, and then the error message that matches the
current value of errno. If s is a null pointer, perror() returns a pointer to
the error message string but performs no output. Note that perrar() does
not reset errna, so you should explicitly reset errna to zero after each per­
rarO call.

www.manaraa.com

A.13 I/O Functions 407

A.13.24 The printfO Function

#include <stdio.h>
int printf(const char * format , ...) ;

The printf() function writes formatted data to the standard output stream
(stdout). The first argument is a character string that may contain text and
format control expressions called conversion specifiers. The remaining
arguments represent the actual data to be written. For each data argu­
ment, there should be one, and only one, conversion specifier in the format
string which defines how the data is to be output. Conversion specifiers
and arguments are associated in the order in which they occur. If there are
more data arguments than conversion specifiers, the remaining data ex­
pressions are evaluated and then ignored. If there are more format specifi­
ers than data arguments, the behavior is implementation-defined.

The printf() function is closely related to the fprintfO, sprintf(),
vfprintf(), and vprintf() functions. They all obey the same formatting rules.
The only difference is that printf() always writes to stdin, whereas fprintf()
and sprintf() allow you to specify an output stream or internal buffer, re­
spectively. vprintf() and vfprintf() are identical to printfO and fprintfO ex­
cept that the argument list is replaced by a predeclared argument array. All
of these functions return the number of data arguments written, or a nega­
tive number if an error occurs.

Each conversion specifier starts with a percent sign (%) and is followed
by optional format modifiers and a conversion character. The conversion
character specifies the type of data (integer, floating-point, or character).
The corresponding data argument must match this type. The format modi­
fiers control such things as field width, left and right justification, and the
padding character. The following example shows a simple printfO call.

int j = 5;
printf("The value of j is: %d\nThe value of j\

squared is: %6d" , j, j*j) ;

The output is

The value of j is: 5
The value of j squared is: 25

Note that there is no explicit separator between text and conversion
specifiers. The printf() function knows it has reached the end of a conver­
sion specifier when it reads a conversion character. In the example, the
conversion character is d, which directs printfO to write an integer in
decimal format. The conversion specifier %d is associated with argument
j, and %6d is associated with j*j. The 6 following the percent sign is a
field width. Note in the output that the value is right-justified by default
and padded with spaces on the left. The legal conversion characters are
shown in Table A-7.

www.manaraa.com

408

Conversion
Character

d, i, 0, u, x,
X

A: The ANSI Runtime Library

Table A-7: printfO Conversion Characters.

Effect

Used to format integer output. d and i output the data
item in decimal form; 0 prints the data in octal form; u
prints the unsigned value of the data item; x and X print
the value in hexadecimal format. x uses the lowercase let­
ters abcdef, while X uses ABCDEF. These formats output
as many digits as are required to represent the number.
Just before one of these conversion characters, you may
enter an h, I, or L. The h signifies that the corresponding
data item is a short int or unsigned short int, and the I and
L signify that the data item is a long int or unsigned long
into

f Prints floating-point values in decimal notation (i.e.,
35.734). The precision designates the number of digits to

appear after the decimal point. The default precision is 6.
If the precision equals zero, the decimal point is not
printed. As long as there is a decimal point, however, there
must be at least one digit to the left of it, even if the value
is less than one (i.e., 0.3411).

e, E Outputs a floating-point value using scientific notation
(i.e., 3.67e+08). There is always one digit to the left of the
decimal point. The number of digits to the right of the
decimal point is determined by the precision. The default
precision is 6. If the precision is zero, the decimal point is
not printed. The exponent value contains at least two dig­
its and as many digits thereafter as are needed to represent
the datum. The letter separating the decimal value from
the exponent is either e or E depending on which conver­
sion character you use.

www.manaraa.com

A.13 I/O Functions

Conversion
Charader

g, G

c

s

P

N

409

Table A-7 (continued)

Effed

Uses either f or e (E if G is specified), depending on the
value of the datum. If the value would require an exponent
less than -4 or greater than the precision, then e (or E) is
used. Otherwise f is used. The precision specifier has the
same effect it has for the f, e, and E conversions. Trailing
zeros are removed from the result, and a decimal point is
printed only if it is followed by a digit.

Prints a character. Because the data argument is passed as
an int, printf() prints the least significant byte.

Prints a string of characters. The data argument should be
a pointer to a null-terminated array. For this conversion
format, the precision is interpreted as the maximum num­
ber of characters to output. Any additional characters in
the string are ignored. If you do not specify a precision, all
characters up to, but not including, the terminating null
character are printed.

The corresponding data argument should be a pointer to
an object of type void. The value of the pointer is con­
verted into a sequence of characters in an implementa­
tion-defined manner.

Records the number of data items written so far. The cor­
responding data argument should be a pointer to an into
printf() fills the int with the number of objects printed so
far.

% The sequence % % outputs a percent sign.

The following program illustrates the default format for each conver­
sion character. The next sections describe how to change the default by
specifying a minimum field width, a precision, left justification, and zero
as the pad character.

www.manaraa.com

410

Program
A-2

A: The ANSI Runtime Library

include <stdarg.h>
#define MAX~GS 20
void f1(int arg-pum, ...)
(

va_list ap;
int arg[MAX_ARGS];
int array_element = 1;
va_start (ap, arg-pum);
while (arg-pum··)
arg[array_element++] = va_arg(ap, int);
va_end (ap);

The output is:

%d %u %0 %x
-25 4294967271 31 19
%c %s
A String
%f %e %g
234.567800 0 . 234568e+03 234.568

Flag Characters-There are a number of optional format modifiers
that may come before the conversion character. The first, called a flag
character, can be any of the characters shown in Table A-B.

Flag
Character

+

Space

Table A-8: printfO Flag Characters.

Meaning

Specifies left justification.

Causes all numeric data to be prefixed with a plus or minus
sign. The default, which this character overrides, is to print a
minus sign for negative numbers but no plus sign for positive
numbers.

Causes negative numbers to be prefixed with a minus sign
and positive numbers to be prefixed with a space. (The de­
fault is no space for positive numbers.)

This modifier has various meanings depending on what con­
version character is specified. For c, d, I, s, and u, this flag
has no effect. For 0 conversions, the # flag causes the value
to be prefixed with a zero (the precision is widened if neces­
sary). For x and X conversions, the value is prefixed with Ox
or OX. For e, E, f, g, and G conversions, the # causes the re­
sult to contain a decimal point, even if the precision is zero.
For g and G conversions, trailing zeros will not be removed
from the result, as they are normally.

www.manaraa.com

A.13 1/0 Functions 411

The following program shows the effects of the flag characters in vari­
ous situations.

Program #include <stdio. h>
A-3 #include <stdlib .h>

int main(void)
{

printf("\\5d\t\5d\n". 25);
printf("\\ 5d\t\ 5d\n". 25);
printf("\\+5d\t\+5d\n\n". 25);
printf("\\o\t\o\n". 25);
printf("\\#o\t\#o\n". 25);
printf ("\\x\t\x\n". 25);
printf ("\\#x\t\#x\n\n", 25);
printf("\\5.0f\t\5.0f\n". 25.0);
printf("\\#5.0f\t\#5.0f\n\n".25.0);
printf("\\+ 5d\t\+ 5d\n". 25);
printf("\\+#5.0f\t+#5.0f\n\n". 25.0);
exi t (0);

The output is

%5d 25
%-5d 25
%+5d +25
%0 31
%#0 031
%x 19
%#x Ox19
%5.0f 25
%#5.0f 25.
%+-5d +25
%+#5.0f +25.

Note that the flags are not mutually exclusive. You can combine them,
as shown in the last two printf() calls.

Minimum Field Width-The next optional format component is an op­
tional minimum field width. This is a decimal constant that represents the
minimum number of characters to output. If the data item requires fewer
characters, it is padded on either the left or the right until the minimum
width is reached. (The default is to pad on the left, but you can specify
right padding with the left adjustment flag.) The default pad character is a
space, but you can make it a zero by making the first digit of the minimum
field width a zero. If the value requires more characters than the minimum
field width, the field is expanded to accommodate the data. The value is
never truncated.

Another way to express the minimum field width is through a dynamic
variable. In this case, you enter an asterisk (*), which informs the printf()
function to use the next data argument as the field width. The following
examples show the effects of several minimum field width specifications.

www.manaraa.com

412 A: The ANSI Runtime Library

Program #include <8tdio.h>
A-4 #include <stdlih.h>

int maine void I
{

printf("\\lOd\t\lOd\n fl • 25 I;
printf("\\OlOd\t\OlOd\n". 25 I;
printf("\\ld\t\ld\n". 25 I;
printf("*f\t*f\n". 5. 33.87 I;
printf("\\7f\t\7f\n". 33.87 I;
exi t (0 I;

The output is

%lOd 25
%OlOd 0000000025
%ld 25
Vf 32.87000
%7f 32.8700000

Note that the 5 in the fourth printf() call corresponds to the asterisk in
the format specifier and represents the minimum field width for the next
data item.

Precision Specifier-The next optional component is a precision speci­
fier, which is designated by a period followed by a decimal constant. For
floating-point values, the precision determines the number of digits to ap­
pear after the decimal point. For integer values, the precision specifier has
the same meaning as the minimum field width specifier and overrides that
specifier. For strings, the precision specifier denotes the maximum number
of characters to print.

The program below illustrates the effects of several precision specifica­
tions.

Program #include <8 tdio. h>
A-5 #include <8tdlib .h>

int maine void I
{

printf{ "\\5d\t\5d\n". 25 I;
printf{ "\\5.3d\t\5.3d\n". 25 I;
printf("%%.3d\t%.3d\n". 25 I;
printf{ "\\4.3f\t%4.3f\n". 23.45 I;
printf("\\4.3f\t\4.3f\n". 23 . 456789 I;
printf("\\4.3e\t\4.3e\n". 23.456789 I;
printf("\\.10s\t\.10s\n". "Print only the first"

" ten characters." I;
exit (0);

www.manaraa.com

A.13 1/0 Functions

The output is

%5d 25
%5.3d 025
%.3d 025
%4.3f 23.450
%4.3f 23.457
%4.3e 0.235e+02
%.10s Print only

413

Note that for integer conversions, the field is padded with zeroes on the
left until the precision length is reached. For floating-point values, if the
true value cannot be expressed in the number of digits reserved by the pre­
cision, it is rounded. Rounding can occur either up or down, depending on
the implementation.

Short and Long Specifiers-Just before the conversion character, you
may enter an h, I, or 1. The h signifies that the corresponding data item is
a short int or unsigned short int, and the I signifies that the data item is a
long int or unsigned long into These prefixes may be used only for integer
specifiers. An L signifies that the corresponding argument is a long double.
Because integral arguments are converted to int, and floating-point argu­
ments are converted to double when they are passed to printf(), these pre­
fixes ensure that arguments are cast back to their original type. If used for
incompatible types, these flags are ignored.

A.13.25 The puteO Function

#inc1ude <stdio.h>
int putc(int c, FILE *stream);

The putc() function writes a character to the specified stream. It is equiva­
lent to (putc() except that it may be implemented as a macro instead of a
function. putc() returns EOF if an error occurs; otherwise, it returns the
character written. Note that both the argument and the returned value are
ints. putc() outputs the least significant byte of the argument.

A.13.26 The puteharO Function

#inc1ude <stdio.h>
int putchar(int c);

The putchar() function writes its argument to the standard output stream
(stdout) and returns the character written. If an error occurs, putchar()
returns EOF.

The expression

putchar(c)

is equivalent to

putc(c, stdout)

www.manaraa.com

414 A: The ANSI Runtime Library

A.13.27 The putsO Function

#include <stdio.h>
int puts (const char *s);

The puts() function writes the string pointed to by s to the standard output
stream (stdout) and appends a newline character to the output. The termi­
nating null character in the array is not written. The call

puts(s)

is equivalent to

fputs(s, stdin)

except that fputs() does not append a newline character. If puts() is suc­
cessful, it returns zero; if an error occurs, it returns a nonzero value.

A.13.28 The removeO Function

#include <stdio.h>
int remove(const char *filename);

The remove() function is used to delete the file identified by filename. If
you try to delete a file that is open, the results are implementation-defined.
remove() returns zero if successful or a nonzero value in the event of a
failure. This is a new function that is not included in older C and UNIX
libraries.

A.13.29 The renameO Function

#include <stdio.h>
int rename(const char *old, const char *new);

The rename() function changes the name of a file from the name pointed
to by old to the name pointed to by new. After execution, the name identi­
fied by the pointer old no longer exists. If the file identified by the pointer
old is open, the effect is implementation-defined. Likewise, if the name
pointed to by new already exists, the results are implementation-defined.
rename() returns zero when it succeeds and a nonzero value when it fails.

A.13.30 The rewindO Function

#include <stdio.h>
void rewind(FILE *stream);

The rewind() function moves the file position indicator for stream to the
beginning of the file. The file identified by stream should be open on a re­
wind() call. The function call

www.manaraa.com

A.13 1/0 Functions 415

rewind (s

is equivalent to

(void) fseek (s, OL, SET_SEEK)

except that the rewind() function clears the end-of-file and error indicators
for the stream and does not return a value.

A.13.31 The scanfO Function

#include <stdio.h>
int scanf (FILE *strearn, const char * format , ...);

The scanf() function reads data from stdin in a form specified by a format
string. The syntax and semantics of scanf() are, to a large extent, the re­
verse of the printf() function. However, there are enough differences that
you should not assume that conversion specifiers behave identically in
both functions.

As with the printf() function, the first argument to scanf() is a format
string. There can be any number of data arguments following the format
string. Each one should be the address of a variable where the data is to be
stored. The data type of each pointer argument must match the type speci­
fied by the corresponding conversion character.

The format string consists of literal characters interspersed with con­
version specifiers. A conversion specifier begins with a percent sign fol­
lowed by optional conversion modifiers and a required conversion
character. It designates how many characters to read and how to interpret
them. Characters other than a conversion string, a space, a newline, or a
vertical tab must match characters in the input stream. A space, horizontal
tab, or newline character occurring in the format string causes scanf() to
skip over characters up to the next nonspace character. For example, the
statement

scanf("Value: %d", &n);

directs scanf() to skip over leading spaces, to read the literal "Value:",
and then to read a decimal constant and store it in the object pointed to by
n. If the first nonspace characters are not "Value:", the function will fail
and the results are unpredictable.

The legal conversion characters and their meanings are shown in

Any conversion character may be preceded by a maximum field width
or an assignment suppression flag. The field width is written in the form of
a decimal digit and directs the scanf() function not to read any more than
the specified number of characters for that particular item. The assignment
suppression flag is an asterisk (*), which causes scanf() to read the data
item but not to assign it to a variable. Consequently, do not enter a corre­
sponding data pointer for a conversion specification with an asterisk.

www.manaraa.com

416 A: The ANSI Runtime Library

Table A-9: scanfO Conversion Characters.

Conversion
Character Effect

d Reads a decimal integer. The corresponding data argu­
ment should be a pointer to an integer.

I Reads a decimal integer, possibly with a prefix and/or
suffix. Legal prefixes are a minus sign (-), a plus sign (+),
Ox or OX to denote a hexadecimal constant, and 0 to de­
note an octal constant. Legal suffixes are u or U to de­
note an unsigned integer and I or L to denote a long
integer. The corresponding data argument should be the
address of a variable with the appropriate type.

o Reads an octal constant. Even if the constant does not
begin with a 0, it is treated as an octal value. The corre­
sponding argument should be the address of an integer
variable.

U Reads an unsigned decimal constant. The corresponding
data argument should be the address of an integer vari­
able.

x, X Reads a hexadecimal constant. The corresponding data
argument should be the address of an integer variable.

e, E, f, g, G Reads a floating-point constant. The corresponding data
argument should be a pointer to a float. (Use an 1 prefix
to indicate that the corresponding argument is a pointer
to a double and an L prefix to indicate that the corre­
sponding argument is a pointer to a long double.) The
floating-point constant may appear in either decimal or
scientific form. These format characters may be used in­
terchangeably.

S Reads a character string. Characters are read until a
space, horizontal tab, or newline is encountered. The cor­
responding argument should be a pointer to an array of
chars. Each character in the string is loaded into the sub­
sequent array element up to, but not including, the termi­
nating null character. The scanf{) function automatically
adds a null character as the last character of the string.
Because there is no bounds checking in C, it is your re­
sponsibility to ensure that the character array is long
enough to hold the input string.

www.manaraa.com

A.13 I/O Functions

Conversion
Character

c

p

n

[scan list]

417

Table A-9: (continued)

Effect

Reads the next character in the stream. It does not skip
over spaces, null characters, or tabs. To read the next
nonspace character, use % ls. If the c conversion charac­
ter is preceded by a field width, then the specified number
of characters are read and the corresponding data argu­
ment should be a pointer to an array of chars. Otherwise,
the data argument can be a pointer to a single char.

Reads a pointer. The actual representation of the pointer
value in the input field is implementation-defined, but it
should be the same as that produced by the %p conver­
sion of prinf(). The corresponding data argument must be
a pointer to a pointer to void.

Records the number of characters read thus far by this
scanf() call. No characters are read for this conversion
character. The corresponding data argument should be a
pointer to an integer.

Reads a character string. If the first character in the scan
list (a list of characters) is not a circumflex (1\), then char­
acters are read from the input stream until a character is
read that is not a member of the scan list. If the first
character is a circumflex, then the scan list serves as a
terminating set-scanf() reads characters from the input
stream until it encounters one of the characters in the list.
The corresponding data argument should be a pointer to
an array of chars. The array is loaded with the characters
read. scanf() automatically appends a null character after
the last character.

% Reads a percent sign. No assignment occurs.

The scanf() function continues reading characters from the input
stream until the format string is exhausted, or an end-of-file is encoun­
tered, or a conflict occurs. A conflict can occur whenever the next charac­
ter in the stream does not match the conversion specifier. For example, the
next character might be a letter, whereas the conversion specifier indicates
a numeric value. A conflict also occurs if the format string contains a
string literal that is not matched by the next character in the input stream.
Regardless of whether a conflict occurs or whether scanf() completes suc­
cessfully, it returns the number of data items assigned. However, if an end-

www.manaraa.com

418 A: The ANSI Runtime Library

of-file is encountered before a conversion or conflict takes place, scanfO
returns EOP.

The following examples show several ways to read an input stream
using scanfO. Assume that the input stream for all three examples is:

The value of pi to 7 digits is 3.1415978

Example 1:

int digits;
float pi;
scanf(uThe value of pi to %d decimal digits is %f",

&digits, &pi);

The value 7 is loaded into digits and 3.1415978 is assigned to pi. The
string literals are matched and ignored. They serve only to move the file
position indicator so that the numeric data can be read.

Example 2:

short digits;
double pi;
char str[80];
scanf("%19c %hd %*19c %5lf", str, &digits, &tpi);

In this example, the number of digits and the value of pi are assigned to
short and double variables, respectively. The field width designation in
%51£ causes scanfO to read only the first 5 characters of pi (3.1415).

The first part of the text is assigned to the array str{}; the second part
has assignment suppressed by the asterisk. Note that there are only three
data arguments even though there are four conversion specifiers because
one of them is suppressed. Also note that the data argument for the text
string is simply str, because an array name by itself is automatically con­
verted to a pointer to the initial element of the array.

Example 3:

long digits;
long double pi;
str[80];
scanf("%*s %*s %*s %*s %*s %ld %*s %*s %*s %Lf",

&digits, &pi);

The number of digits and the value of pi are assigned to a long and
long double, respectively. Each word in the input text is read by a %s con­
version specifier, but assignment is suppressed.

www.manaraa.com

A.13 I/O Functions 419

A.13.32 The setbuf() function

#include <stdio.h>
void setbuf(FILE *stream, char *buf);

The setbuf{} function is used to change the buffering properties of a
stream. Normally, input and output are stored in blocks until the block is
filled, and then the entire block is sent to its destination. The size of a
block is implementation-defined but is typically 512 or 1024 bytes. This
function enables you to make the stream unbuffered. When a stream is
unbuffered, characters are sent to their destination immediately. Use set­
vbuf{} to change the size of the buffer.

The setbuf{} function should be called only after a stream has been
opened and before it has been read from or written to. Once you have per­
formed an I/O operation on a stream, you cannot change its buffer proper­
ties.

To change the default size of a block, you must allocate your own
buffer by declaring an array of chars of the desired block size. Then pass a
pointer to this array as the second argument. Note that this array must
exist at least as long as the stream is open. If it has automatic duration,
therefore, make sure that its scope is wide enough so that it is not deallo­
cated before the stream is closed. To make a stream unbuffered, pass a
null pointer.

The maximum size of a buffer is implementation-defined and is re­
corded in the constant BUFSIZ.

The standard output stream stdout is automatically buffered only if the
stream does not point to a terminal.

The standard diagnostic stream stderr is unbuffered by default.
Except that it returns no value, the setbuf{} function is equivalent to

setvbuf() invoked with the values of jOFBF for mode and BUFSIZ for
size or (if buf is a null pointer) with the value _IONBF for mode.

A.13.33 The setvbufO Function

#include <stdio.h>
int setvbuf(FILE *stream, char *buf, int mode,

size t size);

The setvbuf() function enables you to change the default buffering pa­
rameters for a stream. Use setvbuf{} after you have opened a stream but
before you have read from or written to it.

There are three choices for the argument mode, each of which is a
macro defined in stdio.h:

_IOFBF forces 110 to be fully buffered.

jOLBF causes output to be line buffered.

jONBF causes 110 to be unbuffered.

www.manaraa.com

420 A: The ANSI Runtime Library

If buf is not a null pointer, the array it points to may be used as the
buffer instead of an array automatically allocated by the runtime system.
Note, however, that the array pointed to by buf must have a lifetime at
least as long as the stream to which it is associated.

The argument size specifies the size of the array pointed to by buf. The
contents of this array at any time are indeterminate.

The setvbufO function returns zero if it is successful. It returns a nonz­
ero value if the arguments are invalid or if the request cannot be honored
for some other reason.

A.13.34 The sprintfO Function

#include <stdio.h>
int sprintf(char *s, const char *format, ...);

The sprintfO function behaves exactly like fprintfO, except that the data
are written to a character array instead of an output stream. sprintf(f) ap­
pends a null character after the last character written. It returns the num­
ber of characters assigned, not including the terminating null. See the
description of printfO for more information.

The sprintfO function subsumes the older ecvt(), fcvt(), and gcvt() func­
tions.

A.13.35 The sscanfO Function

#include <stdio.h>
int sscanf(char *s, const char *format, ...);

The sscanfO function is the same as fscanfO, except that the first argument
identifies an array rather than a stream from which to read input. See the
description of scanfO for more information.

A.13.36 The tmpfileO Function

#include <stdio.h>
FILE *tmpfile(void);

The tmpfile() function creates a temporary binary file. The file is opened
with update status in binary mode (wb+). It is automatically deleted when
it is closed, whether explicitly or implicitly. tmpfile() returns a pointer to
the stream of the new file. If for some reason the file cannot be created,
tmpfile() returns a null pointer.

www.manaraa.com

A.13 1/0 Functions 421

A.13.37 The tmpnamO Function

#include <stdio.h>
char * tmpnam (char *s);

Like the tmpfile() function, tmpnam() is used to create a temporary file.
However, tmpnam() is more flexible than tmpfile(). The tmpnam() func­
tion enables you to open a file in either binary or text mode, and the file is
not automatically deleted.

tmpnam() generates a filename that is guaranteed not to conflict with
other filenames. If you pass a null pointer, tmpnam() generates a file name
but leaves it in an internal static object and returns a pointer to that ob­
ject. Subsequent calls to tmpnam() can modify the file name. If you pass a
pointer with a nonzero value, however, tmpnam() assumes that you have
allocated enough storage for the new name so it generates a name, stores it
at the passed address, and returns the pointer argument as the result. The
maximum file name length is stored in L_tmpnam, which is defined in
dimits.h>.

The tmpnam() function is guaranteed to generate at least 25 unique
names before it begins duplicating itself. The actual implementa­
tion-defined number of unique names is represented by the constant
TMP _MAX. The file that is created has the same properties as other files
created within the C context. You can open and close it with calls to
fopen() and fclose(). To delete it, you must explicitly remove() it.

A.13.38 The ungetcO Function

#include <stdio.h>
int ungetc(int c, FILE *stream);

The ungetc() function pushes a character (specified by c) back onto the
specified input stream. The pushed character will be the next character
read assuming there is no intervening fseek(). Note that ungetc() affects
the buffer, but not the file or device associated with the stream. Moreover,
ungetc() affects the file position indicator in undefined ways, so it is not
wise to mix calls to ungetc() with calls to fseek() that use the SEEK_CUR
mode.

If ungetc() cannot push the character onto a stream, it returns EOF.
Otherwise, it returns c.

www.manaraa.com

422

A.13.39 The vfprintf() Function

#include <stdarg.h>
#include <stdio.h>

A: The ANSI Runtime Library

int vfprintf(FILE *stream, const char *format,
va_list arg);

The vfprintf() function can be used in conjunction with the variable argu­
ment macros to perform the same operation as fprintf(). The difference is
that the variable argument list is replaced by the array arg, which must be
initialized by the va_start macro. See Section A.12 on variable argument
macros for more information.

A.13.40 The vprintfO Function

#include <stdarg.h>
#include <stdio.h>
int vprintf(const char * format , va_list arg);

The vprintf() function can be used in conjunction with the printf(). The
difference is that the variable argument list is replaced by the array arg,
which must be initialized by the va_start macro. See Section A.12 on vari­
able argument macros for more information.

A.13.41 The vsprintf() Function

#include <stdarg. h>
#include <stdio.h>
int vsprintf(FILE *stream, const char * format ,

va_list arg);

The vsprintf() function can be used in conjunction with the variable argu­
ment macros to perform the same operation as sprintf(). The difference is
that the variable argument list is replaced by the array arg, which must be
initialized by the va_start macro. See Section A.12 on variable argument
macros for more information.

A.14 General Utilities

The <stdlib.h> header file declares four types and a number of functions
that fall under the category of 1\ general utilities.1\ This group of functions
can be further divided into the following subgroups:

• String Conversion Functions

• Pseudo-Random Number Generation Functions

• Memory Management Functions

www.manaraa.com

A.14 General Utilities

• Environment Functions

• Searching and Sorting Functions

• Integer Arithmetic Functions

The types defined in <stdlib.h> are

A structure returned by the div() function.

A structure returned by the ldiv() function.

423

The data type that results from a sizeof expression.

An integral type whose range can represent all
characters in the largest character set supported by
the compiler.

The <stdlib.h> header file also defines several macros:

EXIT_FAILURE An integral expression that can be returned by the
exit() function to indicate unsuccessful termination.

EXIT _SUCCESS An integral expression that can be returned by the
exit() function to indicate successful termination.

MB_CUR_MAX A positive integer expression that represents the
greatest number of bytes that can be used to repre­
sent a multibyte character in the current locale.

RAND _MAX Expands to an integral constant expression whose
value represents the maximum value returned by
the rand() function.

A.14.1 String Conversion Functions

The following functions convert a string of characters into a numeric
value. For example,

atoi ("1234"

returns the integer value 1234.

A.14.1.1 The atofO Function

#include <stdlib.h>
double atof(const char *nptr);

The atofO function converts the string pointed to by nptr into a double
value. It is equivalent to the strtod() function except that it does not have
the same error-reporting facilities.

www.manaraa.com

424 A: The ANSI Runtime Library

A.14.1.2 The atoiO Function

#include <stdlib.h>
int atoi(const char *nptr);

The atoi() function converts the string pointed to by nptr into its int repre­
sentation.

A.14.1.3 The ato/O Function

#include <stdlib.h>
long atol(const char *nptr);

The atol() function converts the string pointed to by nptr into its long int
representation. It is equivalent to the strtol() function except that it does
not include the same error-reporting facilities.

A.14.1.4 The strtodO Function

#include <stdlib.h>
double strtod (const char *nptr I char **endptr);

The strtod() function interprets the string pointed to by nptr as a float­
ing-point value and returns its double representation. The string may con­
tain leading spaces, which are ignored, followed by an optional plus or
minus sign, followed by the floating-point number in either regular or sci­
entific notation. If the string represents an integer value (i.e., there is no
decimal point), the strtod() function assumes a decimal point following the
last digit. If an inappropriate character appears before the first digit fol­
lowing an e or E, the exponent is assumed to be zero.

The function continues reading and processing characters in the string
until it reaches a character that cannot be part of the floating-point value.
At this point, the function concludes and assigns a pointer to the unrecog­
nized character to endptr (if endptr is a null pointer, however, no assign­
ment takes place).

Assuming successful completion, the strtod() function returns the dou­
ble value of the string. If the function cannot decipher a floating-point
value, it returns zero and sets errno to EDOM. It also assigns the value of
nptr to the object pointed to by endptr, assuming endptr is not a null
pointer.

If strtod() successfully interprets the floating-point value, but the value
is too large to fit in a double, the function returns H.UGE_ VAL (or nega­
tive HUGE_VAL if the floating-point value is negative) and sets errno to
ERANGE. If the floating-point value is too small to be represented in a
double, the function returns zero and sets errno to ERANGE.

www.manaraa.com

A.14 General Utilities

A.14.1.5 The strto/O Function

#include <stdlib.h>
long strtol(const char *nptr, char **endptr,

int base) ;

425

The strtol() function converts the string pointed to by nptr into its long int
representation in any base from 2 through 36. Leading white space is ig­
nored and an optional plus or minus sign is allowed.

If the base value is zero, then the string is interpreted as a decimal inte­
ger constant, possibly preceded by a plus or minus sign but not including
an integer suffix. Otherwise, the value of base should be between 2 and 36
to indicate the base to be used for conversion. Bases greater than 9 use
alphabetic letters from a (valued at 10) to z (valued at 35). If the value of
base is 16, the integer may include a OX or Ox prefix to indicate a hexa­
decimal constant.

The strtol() function continues reading characters until it reaches a
character that cannot be part of the number. A pointer to this character is
assigned to endptr. (If endptr is a null pointer, however, no assignment
takes place.)

Upon successful completion, strtol() returns the converted value. If it
cannot decipher an integer from the string, it returns zero and sets errno to
EDaM. It also assigns the value of nptr to the object pointed to by
endptr, assuming endptr is not a null pointer.

If strtol() successfully interprets the integer value but it is too large to
fit in a long int, the function returns LONG_MAX or LONG_MIN, de­
pending on the sign of the value, and sets errno to ERANGE.

A.14.1.6 The strtou/O Function

#include <stdlib.h>
unsigned long int strtoul(const char *nptr,

char * * endptr , int base);

The strtoulO function converts the string pointed to by nptr into its un­
signed long int representation in any base from 2 through 36. Leading
white space is ignored. An optional plus or minus sign is not allowed.

If the base value is zero, then the string is interpreted as a decimal inte­
ger constant, not including an integer suffix. Otherwise, the base value
should be between 2 and 36 to indicate the base to be used for conversion.
Bases greater than 9 use alphabetic letters from a (valued at 10) to z
(valued at 35). If the value of base is 16, the integer may include a OX or
Ox prefix to indicate a hexadecimal constant.

The strtol() function continues reading characters until it reaches a
character that cannot be part of the number. A pointer to this character is
assigned to endptr. (If endptr is a null pointer, however, no assignment
takes place.)

www.manaraa.com

426 A: The ANSI Runtime Library

Upon successful completion, strtal() returns the converted value. If it
cannot decipher an integer from the string, it returns zero and sets errna to
ED OM. It also assigns the value of nptr to the object pointed to by
endptr, assuming endptr is not a null pointer.

If strtal() successfully interprets the integer value but it is too large to
fit in a unsigned long int, the function returns ULONG_MAX and sets
errna to ERANGE.

A.14.2 Pseudo-Random Number Generator Functions

The rand() and srand() functions enable you to generate pseudo-random
numbers.

A.14.2.1 The randO Function

#include <stdlih.h>
int rand (void);

The rand() function returns an integer in the range 0 through
RAND_MAX. Successive calls to rand() should produce different integers.
However, the sequence of random numbers could be the same for each
program execution unless you use a different seed value via the srand()
function.

A.14.2.2 The srandO Function

#include <stdlih.h>
void srand (unsigned int seed);

The srand() function uses the argument as a seed for a new sequence of
pseudo-random numbers to be returned by subsequent calls to rand(). If
srand() is invoked with the same seed value, the sequence of generated
numbers will be the same. The default seed value is 1.

A.14.3 Memory Management Functions

The memory management functions enable you to allocate and deallocate
memory dynamically. See Chapter 8 for more information about these
functions.

www.manaraa.com

A.14 General Utilities 427

A.14.3.1 The caliocO Function

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

The calloc() function allocates contiguous space for nmemb objects, each
of which has a length in bytes specified by size. All bits in the allocated
space are initialized to zero. calloc() returns a pointer to the first byte of
the allocated space. If the space cannot be allocated, or if nelem or size is
zero, calloc() returns a null pointer.

A.14.3.2 The freeO Function

#include <stdlib.h>
void free(void *ptr);

The free() function deallocates the space pointed to by ptr, which should
hold an address returned by a previous call to calloc(), malloc(), or real­
loc(). If ptr is a null pointer, free() takes no action. If ptr points to an area
that was not previously allocated by one of the memory-management
functions, or to an area that has already been deallocated, the behavior is
undefined. Once a memory area has been freed, assume that its contents
have been destroyed. Do not attempt to use the area again. The operating
system may recycle the area for future use, but this is beyond user control.

Note that the ANSI Standard does not support cfree(), which in many
implementations is used to free space allocated by calloc().

A.14.3.3 The mallocO Function

#include <stdlib.h>
void malloc(size_t size);

The malloc() function allocates space for an object whose length is speci­
fied by size. malloc() returns a pointer to the first byte of the allocated
space. If the space cann'Jt be allocated, or if size is zero, malloc() returns a
null pointer. The space allocated by mallocO is not initialized to any spe­
cial value.

A.14.3.4 The reallocO Function

#include <stdlib.h>
void realloc(void *ptr, size_t size);

The realloc() function changes the size of a previously allocated space. The
ptr argument should hold the address of an area previously allocated by
malloc(), calloc(), or realloc(). The size argument specifies the new size. If
the new size is smaller than the old size, the unused portion at the end is

www.manaraa.com

428 A: The ANSI Runtime Library

discarded. If the new size is larger than the old size, then all of the old con­
tents are preserved and new memory is tacked on to the end. The new
space is not initialized.

realloc() returns a pointer to the first byte of the new object. If the
space cannot be allocated, realloc() returns a null pointer but leaves the
memory area unchanged. If ptr is a null pointer, realloc() behaves just like
a malloc() function. If size equals zero, realloc() returns a null pointer and
frees up the space pointed to by ptr. If ptr does not point to a previously
allocated area, the behavior is undefined.

A.14.4 Environment Functions

The C library contains several functions for communicating with the com­
puter environment, usually through the operating system. These functions
enable you to exit prematurely from a program, to specify behavior after
program termination, and to execute operating system commands.

A.14.4.1 The abortO Function

#include <stdlib.h>
void abort (void) i

The abort() function causes abnormal termination of a program. There is
no guarantee that buffers will be flushed, that open streams will be closed,
or that temporary files will be deleted. The abort() function can be turned
off by catching the SIGABRT signal with the signai() function. If the
SIGABRT signal is not caught, the abort() function causes an unsuccessful
termination status to be returned to the host environment by means of the
function call

raise (SIGABRT)

If the SIGABRT signal is being ignored, abort() returns no value. Oth­
erwise, abort() causes program termination, so it cannot return to its
caller.

A.14.4.2 The atexitO Function

#include <stdlib.h>
int atexit(void (*func) (void))i

The atexit() function provides a program with a convenient way to clean
up an environment before the program exits. The atexit() function takes a
pointer to a function as an argument and registers that function to be
called at program termination. You can register at least 32 functions that
will be invoked in the reverse order from which they are registered. The
registered functions may not themselves take arguments. When the regis-

www.manaraa.com

A.14 General Utilities 429

tered functions are executed, the program environment is the same as
when the main() function is called at program start-up. Therefore, these
functions should not use variables declared in other modules, even if they
have fixed duration.

If it succeeds, atexit() returns zero. Otherwise, it returns a nonzero
value.

A.14.4.3 The exitO Function

#include <stdlib.h>
void exit(int status)i

The exit() function produces normal program termination. First, all func­
tions registered by the atexit() function are called, in reverse order of their
registration. Next, all open output streams are flushed, all open streams
are closed, and all files created by the tmpfile() function are deleted. Fi­
nally, control is returned to the host environment. If the value of status is
zero or EXIT_SUCCESS, the status returned is successful termination. If
the returned value is EXIT_FAILURE, an implementation-defined mean­
ing of unsuccessful termination is indicated. Otherwise the returned status
is unsuccessful termination. Invoking exit() is the same as returning from
main(), with the exception that the exit() call causes all functions regis­
tered by atexit() to be invoked.

A.14.4.4 The getenvO Function

#include <stdlib.h>
char *getenv(const char *name)i

Each environment has an implementation-defined environment list, of
which each entry has the form name == value. The getenv() function
matches the argument string to one of the names in the list and returns the
corresponding value. If the argument does not match any names in the list,
a null pointer is returned.

A.14.4.5 The systemO Function

#include <stdlib.h>
int system (const char *string)i

The system() function passes the string pointed to by string to the host
environment to be executed. The string should be a command meaningful
to the command processor in the host environment. Before calling sys­
tem(),close all open files because the operating system may access them in
unexpected ways.

www.manaraa.com

430 A: The ANSI Runtime Library

If string is a null pointer, the function call is interpreted as a request to
see whether a command processor exists. system() returns zero if there is
no command processor or a nonzero value to indicate that a command
processor exists. If the argument is not a null pointer, system() returns an
implementation-defined value.

A.14.5 Searching and Sorting Fundions

These functions are efficient routines that enable searching for an object in
an array and sorting an array. Although they are general-purpose routines,
they have usually been finely tuned to run efficiently.

A.14.5.1 The bsearchO Function

#include <stdlib.h>
void bsearch(const void *key, const void *base,

size_t nel, size_t *keysize,
int (*compar) (const void *,
const void *));

The bsearch() function searches an array for an element that matches the
object pointed to by key. The array itself is identified by the base argu­
ment, which points to the array's initial element. The nel argument speci­
fies the number of array elements to search through, and keysize
represents the size of each element.

The array must have been previously sorted in ascending order ac­
cording to a comparison function pointed to by compar. The comparison
function, which you must supply, takes two arguments and returns a nega­
tive number if the object pointed to by the first argument is less than the
object pointed to by the second, zero if the two arguments are equal, or a
positive number if the first argument is greater than the second. The run­
time library supplies a standard comparison function called memcmp().

bsearch() returns a pointer to the matching object in the array or a null
pointer if no match is found. If two members compare as equal, a pointer
to either one may be returned, depending on the implementation.

A.14.5.2 The qsortO Function

#include <stdlib.h>
void qsort(void *base, size_t nel, size_t keysize,

int (*compar) (coast void *,
const void *));

The qsort() function sorts an array of nel objects in ascending order. The
initial element of the array is pointed to by base, and keysize specifies the
length of each object. The array is sorted according to a comparison func­
tion pointed to by compar.

www.manaraa.com

A.14 General Utilities 431

The comparison function, which must be supplied, takes two argu­
ments and returns a negative number if the first argument is less than the
second, zero if the two arguments are equal, or a positive number if the
first argument is greater than the second. The runtime library supplies a
standard comparison function called memcmp(). If two elements in the
array are equal, their order is unspecified. qsort() does not return a value.

A.14.6 Integer Arithmetic Functions

The following functions take integer arguments.

A.14.6.1 The absO Function

#include <stdlib.h>
int abs (int i);

The abs() function returns the absolute value of i. If the result cannot be
represented by an int, the behavior is undefined. For example, in two's
complement notation, the absolute value of the largest negative number
cannot be represented.

A.14.6.2 The divO Function

#include <stdlib.h>
div_t idiv(int numer, int denom);

The div() function divides den om into numer and returns a structure con­
taining the quotient and remainder. The structure contains the following
members:

int quat; /* quotient */
int rem; /* remainder */

If the result cannot be represented, the behavior is undefined.

A.14.6.3 The labsO Function

#include <stdlib.h>
long int labs(long int j);

The labs() function is equivalent to the abs() function, except that the ar­
gument and return value have type long into

www.manaraa.com

432 A: The ANSI Runtime Library

A.14.6.4 The IdivO Function

#include <stdlib.h>
ldiv_t ldiv(long numer, long denom);

The ldivO function is identical to divO, except that the arguments and re­
sults are long ints instead of ints.

A.15 String-Handling Functions

The C library contains a number of useful functions for manipulating
character strings. All of these functions require that the header file
<string.h> be included. These functions fall into three general categories:

• Functions that begin with str operate on null-terminated strings.

• Functions that begin with strn operate on strings with a specified
maximum length.

• Functions that begin with mem operate on arrays of data objects of
specified length.

The type size_t used by many of these functions is a type defined in
string.h, which is the type returned by a sizeof expression.

A.15.1 The memchrO Fundion

#include <string.h>
void *memchr(const void *s, int c, size_t n);

The memchrO function locates the first occurrence of c (converted to
an unsigned char) in the array pointed to by s. If it finds the value,
memchrO returns a pointer to it; otherwise, memchrO returns a null
pointer.

A.15.2 The memcmpO Fundion

#include <string.h>
int memcmp(const void *sl, const void *s2,

size_t n);

The memcmpO function compares the first n characters of sl with s2.
Each element in sl is compared in turn to the corresponding element in s2.
As soon as they differ, memcmpO determines which is numerically greater.
If sl is greater, memcmpO returns a positive value; if s2 is greater, a nega­
tive value is returned; if the two are equal up to n elements, memcmpO
returns zero. If there are fewer than n elements in either array, the results
are undefined.

www.manaraa.com

A.15 String-Handling Functions 433

Although the arguments to this function are defined as void *, the
function was really intended to compare character strings. It may not
work as expected for other types of objects. This is especially true for
structures that contain holes and objects that have the high-order bit set.
See the description of 5trcmp() for contrast.

A.15.3 The memcpyO Function

#inc1ude <string.h>
void *memcpy(void *sl, const void *s2, size_t n);

The memcpy() function copies n characters from string 52 to string 51. If
the strings overlap, the behavior is undefined. memcpy() returns the value
of 51.

A.15.4 The memmoveO Function

#inc1ude <string.h>
void memmove(void *sl, const void *s2, size_t n);

The memmove() function copies n characters from object 52 to object 51.
It is essentially the same as the memcpy() function except that it works
even when the two objects (51 and 52) overlap. The memmove() function
acts as if the 52 object were first copied to a temporary array and then
copied from the temporary holding area to 51.

A.15.5 The memset() Function

#inc1ude <string.h>
void *memset(void *s, int c, size_t n);

The mem5et() function provides a means for initializing an array to a par­
ticular value. It copies the value c (converted to an unsigned char) into the
first n elements of array 5. The mem5et() function returns the value 5.

A.15.6 The strcatO Function

#inc1ude <string.h>
char *strcat(char *sl, const char *s2);

The 5trcat() function appends a copy of string 52 to string 51. The termi­
nating null character in 51 is overwritten by the initial character in 52.
Characters are copied from 52 until a terminating null character is reached
(the null character is also copied). The results are undefined if the two
strings overlap. In particular, you cannot necessarily double a string by
using the same string as both arguments. 5trcat() returns the value of 51.

www.manaraa.com

434 A: The ANSI Runtime Library

A.15.7 The strchrO Function

#inc1ude <string.h>
char *strchr(const char *s, int c);

The strchrO function locates the first occurrence of c (converted to a char)
in the string s. The terminating null character is considered part of the
string. If the character is located, strchrO returns a pointer to it. Other­
wise, it returns a null pointer.

A.15.S The strcmpO Function

#inc1ude <string.h>
int strcmp(const char *sl, const char *s2);

The strcmpO function compares string 51 with string 52. If 51 is less than
52, strcmpO returns an integer greater than zero; if 51 is less than 52, a
negative integer is returned; and if the two strings are equal, strcmpO re­
turns zero. See the description of memcmpO for contrast.

A.15.9 The strcol/O Function

#inc1ude <string.h>
size_t strco11(char *to, size_t maxsize,

const char *from);

The strcollO function transforms the string pointed to by from so that it is
suitable as an argument to memcmpO or strcmp(). This is particularly ap­
plicable to implementations for which the local language forces text to be
stored in an inconsistent manner. For example, some languages contain so
many characters that they cannot all be stored in a char. The strcollO
function makes it possible for two strings in such an implementation to be
compared to one another.

The transformed string is placed in the array pointed at by to. The re­
sulting string will never be more than twice the length of the original string
(plus room for the terminating null character). Even fewer characters can
be specified to be stored in the to array with the maxsize argument. max­
size represents the maximum number of characters to be placed in the re­
sulting string, including the terminating null character.

If the resulting string contains no more than maxsize characters,
strcollO returns the number of characters placed in the string. Otherwise,
it returns zero and the contents of the to array are indeterminate.

www.manaraa.com

A.15 String-Handling Functions 435

A.15.10 The strcpyO Function

#include <string.h>
char *strcpy(char *s1, const char *s2);

The strcpy() function copies the contents of string s2 into the array
pointed to by sl. The string identified by s2 must have a terminating null
character, which is also copied. If the string and the array overlap, the re­
sults are undefined. strcpy() returns the value of sl. See the descriptions of
memcpy() and strncpy() for contrast.

A.15.11 The strcspnO Function

#include <string.h>
size_t strcspn(const char *s1, const char *s2);

Starting from the beginning of sl, the strcspn() function counts characters
that are not present in s2. As soon as it matches a character in the two
strings, or it reaches the end of sl, it returns the number of characters
read. The terminating null character is not considered part of s2.

A.15.12 The strerrorO Function

#include <string.h>
char *strerror(int errnum);

The strerror() function returns a pointer to an error message represented
by errnum. The array that holds the message cannot be modified, but it
can be overwritten by subsequent calls to strerror().

A.15.13 The strlenO Function

#include <string.h>
size_t strlen(const char *s);

The strlen() function returns the length of the string (number of bytes)
pointed to by s. The terminating null character is not included in the
length.

A.15.14 The strncat() Function

#include <string.h>
char *strncat(char *s1, const char *s2,

size_t n);

The strncat() function appends up to n characters from string s2 to the end
of string s1. The terminating null character in s1 is overwritten by the ini-

www.manaraa.com

436 A: The ANSI Runtime Library

tial character in s2. If the terminating null character in s2 is reached before
n characters have been written, the null character is copied, but no other
characters are written. If n characters are written before a terminating null
is encountered, the strncat() function appends its own terminating null
character to sl, so that n+1 characters are written. The results are unde­
fined if the two strings overlap in memory. strncat() returns sl.

A.1S.15 The strncmpO Function

#include <string.h>
int strncmp(const char *sl, const char *s2,

size_t n);

The strncmp() function is the same as strcmp() except that it does not
compare more than n characters. If sl is greater than s2, strncmp() returns
an integer greater than zero; if sl is less than s2, a negative integer is re­
turned; and if the two strings are equal, strncmp() returns zero.

A.15.16 The strncpyO Function

#include <string.h>
char *strncpy(char *sl, const char *s2,

size_t n);

The strncpy() function copies up to n characters from the string s2 into the
array pointed to by sl. If the string to be copied is shorter than n charac­
ters, null characters are appended to the array as padding until n charac­
ters have been written. Note that if the string to be copied is longer than n
characters, the array that gets the copy will not be null-terminated. If the
string and the array overlap, the results are undefined. strcpy() returns the
value of sl. See the descriptions of memcpy() and strcpy() for contrast.

A.1S.17 The strpbrkO Function

#include <string.h>
char *strpbrk(canst char *sl, canst char *s2);

The strpbrk() function is the inverse of the strcspn() function. It locates the
first character in sl that is also present in s2. It returns a pointer to this
character, or a null character if no match occurs. The terminating null
characters are not included.

www.manaraa.com

A.15 String-Handling Functions 437

A.15.18 The strrchrO Function

#include <string.h>
char *strrchr(canst char *s, int c);

The strrchr() function locates the last occurrence of c (converted to a char)
in string s. It returns a pointer to this character, or a null pointer if the
character is not present in the string.

A.15.19 The strspnO Function

#include <string.h>
size_t strspn(canst char *s1, canst char *s2);

The strspn() function counts characters in sl, starting from the beginning
of the string, until it reaches a character that is not present in s2. It returns
the number of characters counted.

A.15.20 The strstrO Function

#include <string.h>
char *strstr(canst char *s1, canst char *s2);

The strstr() function locates the first occurrence of string s2 (not including
the terminating null character) in string sl. It returns a pointer to the lo­
cated string in sl, or a null pointer if no match occurs.

A.15.21 The strtokO Function

#inc1ude <string.h>
char *strtak(char *s1, canst char *s2);

The strtok() function divides a string into a number of tokens. The seman­
tics of strtok() are somewhat complex. String sl is the string to be token­
ized, and s2 contains the separator characters. The strtok() function is
designed to be called multiple times to fully tokenize sl. Its behavior on
the first call is somewhat different from its behavior on subsequent calls.
The first call to strtok() operates as follows:

1. strtok() locates the first character in sl that is not contained in s2.
If no such character is found, strtok() returns a null pointer. If such
a character is found, it represents the beginning of the first token.
Ultimately a pointer to this character is returned, but first strtok()
finds the end of the token, as described in Step 2 below.

2. Assuming it finds the beginning of a token, strtok() then looks for
a character that is contained in s2. If it cannot find such a charac­
ter, then the token extends to the end of sl, and subsequent

www.manaraa.com

438

Program
A-6

A: The ANSI Runtime Library

searches for a token will fail. If it does find such a character, it
overwrites it with a null character, which terminates the token. The
strtok() function then saves a pointer to the next character in sl for
use in subsequent calls.

After the first call, all subsequent calls to strtok() should have NULL
as the first argument. They begin tokenizing where the last strtok() func­
tion left off and behave as described in Step 2. Program A-6 illustrates the
behavior of the strtok() function.

The output is

a
b*
c-d
Ie

#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <string .h>

int main(void I
{

static char s[] = "+a+b* (c dl/e";
char *token;
token = strtok(5, "+" I; 1* token points to
Han .. /

printf("\5\n", token I;
1* token points to "b*" *1
token = strtok(NULL, "(" I;
printf("\s\n", token I;
1* token points to "c d" *1
token = strtok(NULL, "+*/1" Ii
printf ("\s\n", token I I

1* token points to "Ie" *1
token = strtok(NULL, "+" I I

printf("\8\n", token II
1* token i5 a null pointer *1
token strtok(NULL, n+n) I
exit (0 I;

A.15.22 The strxfrmO Function

#include <string.h>
size_t strxfrm(char *s1, const char *s2,

size_t n) I

The strxfrm() function transforms a string (s2) in some implementa­
tion-defined manner so that it is suitable as an argument to the strcmp()
function. The resulting string is placed in the array pointed to by sl. n

www.manaraa.com

A.16 Multibyte Character Functions 439

specifies the maximum length of the transformed string (including the ter­
minating null character).

The only requirement on the transformation is that any two strings
transformed by strxfrm() and compared with strcmp() must return the
same result as would occur if they were compared with strcoll() prior to
the transformation. In other words, the transformation may change cer­
tain character codes, but the collating sequence must remain the same.

strxfrmO returns the length of the transformed string, not including the
terminating null character.

A.16 Multibyte Character Functions

The ANSI standard defines several runtime routines to assist programmers
working with extended character sets that utilize multi byte characters.
Whether or not multi byte characters are in use and the interpretation of
each multibyte character are determined by the value of the Le_TYPE
macro and the current locale setting (see Section A.8).

A.16.1 Character Functions

Multibyte characters can have different shift states, which determine
how each multi byte character is interpreted. A programmer can change
shift states by forcing the system to read special multi byte characters. If a
call to one of these functions changes the shift state, the shift state will
remain changed until a subsequent call changes it again. Passing a null
pointer to any of the following functions returns the multi byte character
system to its initial shift state.

A.16.1.1 The mblenO Function

#include <stdlib.h>
int mblen(const char *5, size_t n);

If s is not a null pointer, mblen() returns the number of characters com­
posing the multi byte character pointed to by s. If s points to a null charac­
ter, mblen() returns O. If s does not point to a valid multibyte character,
mblen() returns -1.

If s is a null pointer, mblen() sets the multi byte character system to its
initial shift state. The function returns 0 if there is only one shift state and
a non-zero value if there exists more than one shift state.

www.manaraa.com

440 A: The ANSI Runtime Library

A.16.1.2 The mbtowcO Function

#include <stdlib.h>
int mbtowc (wchar_t *pwc, const char *s,

size_t n);

If 5 is not a null pointer, the mbtowc() function converts a multi byte char­
acter into an integer code and stores the code at the address pointed to by
pwc. The mbtowc() function will attempt to determine how many bytes
compose each multi byte character and will read that many bytes. At no
time, however, will it read more than n bytes or the number of bytes speci­
fied by the MB_CUR_MAX macro, whichever is less. The value returned
by mbtowc() is 0 if 5 points to a null character, or the number of bytes
comprising the multi byte character if mbtowc() successfully converts it.

If 5 is a null pointer, mbtowc() sets the multibyte character system to its
initial shift state. The function returns 0 if there is only one shift state and
a nonzero value if there exists more than one shift state.

A.16.1.3 The wdombO Function

#include <stdlib.h>
int wctomb (char *s, wchar_t wchar);

If 5 is not a null pointer, wctomb() converts a character code into its mul­
tibyte representation and stores the multibyte character in the array
pointed to by s. wctomb() returns the number of characters in the mul­
tibyte character. If wchar does not correspond to a valid multi byte charac­
ter, wctomb() returns -1.

If 5 is a null pointer, wctomb() sets the multi byte character system to its
initial shift state. The function returns 0 if there is only one shift state and
a nonzero value if there exists more than one shift state.

A.16.2 Multibyte String Functions

A.16.2.1 The mbstowcsO Function

#include <stdlib.h>
size_t mbstowcs (wchar_t *pwcs, const char *s,

size_t n);

The mbstowcs() function converts a multibyte character string pointed to
by 5 into an array of integer codes that correspond to each character. The
codes are placed in the array pointed to by pwcs. mbstowcs() stops read­
ing multibyte characters as soon as it encounters a null character or it
reads n multibyte characters, whichever comes first.

www.manaraa.com

A.17 Date and Time Functions 441

Each mbstowcs() call begins in the initial shift state. Characters that are
read may change the shift state for the duration of the function call, but
they have no effect on subsequent calls to any other function.

mbstowcs() returns the number of converted characters, not including
the null character, if there is one. If mbstowcs() encounters an invalid mul­
tibyte character, it returns -1.

A.16.2.2 The wcstombsO Function

#include <stdlib.h>
size_t wcstambs(char *s, canst wchar_t *pwcs,

size_t n) i

The wcstombs() function converts an array of codes pointed to by pwcs
into an array of multibyte characters and stores the characters in the array
pointed to by s. wcstombs() stops converting characters as soon as it en­
counters a null character or after it has filled n bytes in the string pointed
to by s, whichever comes first.

Each wcstombs() call begins in the initial shift state. Characters that are
read may change the shift state for the duration of the function call, but
they have no effect on subsequent calls to any other function.

wcstombs() returns the number of bytes written to s, not including the
terminating null character, if there is one. If wcstombs() encounters an
invalid multi byte code, it returns -1.

A.17 Date and Time Functions

The date and time functions enable you to access the system clock and
calendar in a variety of ways. All of these functions require inclusion of
the header file <time.h>. There are three types of time that these functions
return:

• calendar time represents the current date and time according to the
Gregorian calendar;

• local time is the calendar time expressed for a specific time zone;

• daylight savings time reflects a temporary change in the local time
due to daylight savings regulations.

The header file defines one macro and declares three type definitions.
The macro is

CLOCKS_PER_SEC
Represents the number per second of the value returned by
the clock() function.

The type definitions are:

clock_t Arithmetic type capable of representing time.

www.manaraa.com

442 A: The ANSI Runtime Library

Arithmetic type capable of representing time.

tm Structure that holds the components of a calendar time (see
below).

The tm structure contains the following components at least (it may
contain additional components):

int tm~eci /* seconds after the minute - [0, 59]
*/

int tm_mini /* minutes after the hour -- [0, 59]
*/

int tm_houri /* hours since midnight -- [0, 23] */
int ~Yi /* day of the month -- [1, 31] */
int tm_moni /* months since January -- [0, 11] */
int tm-yeari /* years since 1900 -- [] */
int tm_wdaYi /* days since Sunday -- [0, 6] */
int tm-ydaYi /* days since January 1 -- [0, 365] */
int tm_isdsti /* daylight savings time flag */

The value of tm_isdst is positive if daylight savings time is in effect,
zero if daylight savings time is not in effect, and negative if the informa­
tion is not available.

A.17.1 The asdimeO Function

#include <tirne.h>
char *asctirne (const struct tm *tirneptr) i

The asctime() function converts the time represented by the structure
pointed to by timeptr into a character string with the following form:

Sun Sep 16 01:03:52 1973\n\0

asctime() returns a pointer to the generated string. Subsequent calls to
asctime() or ctime() may overwrite this string.

A.17.2 The clockO Function

#include <time.h>
clock_t clock(void)i

The clock() function returns the amount of processor time used by the
program. To get the value in terms of seconds, divide the returned value
by the macro CLOCKS_PER_SEc' The behavior of the clock() function is
largely implementation defined. There is no precise definition for deter­
mining when the clock should start counting, and an implementation only
needs to give its best approximation. If the processor time is not available,
the clock() function returns -1 cast to the clock_t type.

www.manaraa.com

A.17 Date and Time Functions 443

A.17.3 The ctimeO Function

#include <time.h>
char *ctime(const time_t *timer);

The ctime() function converts the calendar time pointed to by timer to lo­
cal time in the form of a character string. It is equivalent to

asctime(localtime(timer))

A.17.4 The difftimeO Function

#include <time.h>
double difftime(time_t time!, time_t timeD);

The difftime() function returns the difference timel - time(), expressed in
seconds.

A.17.5 The gmtimeO Function

#include <time.h>
struct tm *gmtime(const time_t *timer);

The gmtime() function converts th e calendar time pointed to by timer into
a broken-down time, expressed as Greenwich Mean Time (GMT). The
gmtime() function returns a pointer to a structure containing the time
components. If the GMT is not available, gmtime() returns a null pointer.
Subsequent calls to gmtime() or localtimeO may point to the same static
structure tm, which is overwritten by each call.

A.17.6 The localtimeO Function

#include <time.h>
struct tm *localtime(const time_t *timer);

The localtime() function converts the calendar time pointed to by timer
into a broken-down time, expressed as local time. The localtime() function
returns a pointer to a structure containing the time components. Subse­
quent calls to gmtime() or localtimeO may point to the same static struc­
ture tm, which is overwritten by each call.

www.manaraa.com

444

Program
A-7

A: The ANSI Runtime Library

A.17.7 The mktimeO Function

#include <time.h>
time_t mktime(struct tm *timeptr);

The mktime() function converts a broken-down time in a tm structure into
a calendar time of the same form returned by the time() function. The val­
ues of tm_wday and tm_yday are ignored, and the values of the other
fields are not restricted to the values shown in the earlier description of
tm. In addition to returning a calendar time, mktime() also sets the fields
in the structure pointed to by timeptr to appropriate values. This means
that if the original values are out of range, mktime() forces them into the
ranges listed above. mktime() also assigns appropriate values to tm_wday
and tm_yday.

If mktime() cannot calculate a returnable calendar time, it returns
(time_t)-l.

Program A-7 shows how you might use the mktime() function to write
a function that performs some loop for a specified number of minutes.

Note that the mktime() function will work even if the expression

when.tm_min += x_minutes

is greater than 59.

#include <time.h>

void do_for~inutes(int x~inutes)
{

struct tm when;
time_t now, deadline;
time (&now);
when = *localtime(&now);
when.t~in += ~inutes;
deadline = mktime(&when);
1* Do foo() for ~inutes *1
while (difftime(time (0), deadline I > 0)

foo () ;

A.17.8 The strttimeO Function

#include <time.h>
size_t strftime(char *s, size_t maxsize,

const char *format,
const struct tm *timeptr);

The strftime() function enables you to construct a string containing infor­
mation from the structure pointed to by timeptr. The format of strftime()
is similar to printf(), where the first argument is a format string that can
contain text as well as format specifiers. In this case, however, the format

www.manaraa.com

A.17 Date and Time Functions 445

specifiers are replaced with particular data from the timeptr structure. No
more than max_size characters will be placed in the resulting string
pointed to by s.

Format
Specifier

%a

%A

%b

%B

%c

%d

%H

%1

%j

%m

%M

%p

%5

%U

%w

%W

%x

%X

%y

%y

%Z

%%

Table A-10: Format specifiers for the time functions.

Meaning

The abbreviated weekday name.

The full weekday name.

The abbreviated month name.

The full month name.

An appropriate date and time representation.

The day of month as a decimal number (01 - 31).

The hour (24-hour clock) as a decimal number (00 - 23).

The hour (12-hour clock) as a decimal number (01 - 12).

The day of the year as a decimal number (001 - 366).

The month as a decimal number (01 - 12).

The minute as a decimal number (00 - 59).

Either AM or PM (or the equivalent in the local language).

The second as a decimal number (00 - 59).

The week number of the year (Sunday being the first day of
the week) as a decimal number (00 - 52).

The weekday as a decimal number (0 - 6)-Sunday is o.
The week number of the year (where Monday is the first day
of the week) as a decimal number (00 - 52).

An appropriate date representation.

An appropriate time representation.

The year (last two digits only) as a decimal number (00 -
99).

The year (all four digits) as a decimal number.

The time zone name, or no characters if no time zone exists.

%

www.manaraa.com

446 A: The ANSI Runtime Library

The format specifiers and what they are replaced by are listed in Table
A-IO. The exact value and format of each specifier depend on the particu­
lar implementation and the values stored in the structure pointed to by
timeptr.

If the total number of characters resulting from replacements is not
more than maxsize, strftimeO returns the number of characters written to

the array pointed to by s (not including the terminating null character).
Otherwise, strftimeO returns zero and the contents of the s array are inde­
terminate.

A.17.9 The timeO Function

#include <time.h>
time_t timet time_t *timer);

The timeO function returns the implementation's best approximation of
the calendar time. The encoding of the value is unspecified. If timer is not
a null pointer, the calendar time is also assigned to the object that it points
to. If the calendar time is unavailable, timeO returns -1.

www.manaraa.com

B
Implementation

Limits
Every C compiler imposes certain limitations upon the types of programs
it will compile, such as the maximum length of variable names and the
maximum length of lines in source files. These constraints are called
translation limits because they concern how the compiler translates source
text. There are also numerical limits, which concern the minimum and
maximum values that can be represented by variously typed objects. For
both types of limits, the ANSI Standard defines minimum values. An
ANSI-conforming C compiler must support at least these minimum values
but is free to exceed these limitations. In fact, ANSI recommends that im­
plementations avoid imposing any limits wherever possible. Your compiler
documentation should list all limits.

B.1 Translation Limits

An ANSI-conforming compiler must support at least the following:

• 15 nesting levels of compound statements, iteration control struc­
tures, and selection control structures

• 6 nesting levels in conditional compilation

• 12 pointer, array, and function declarators modifying a basic type
in a declaration

• 32 expressions nested by parentheses

www.manaraa.com

448 B: Implementation Limits

• 31 significant initial characters in an internal identifier or macro
name

• 6 significant initial characters in an external identifier

• 511 external identifiers in one source file

• 127 identifiers with block scope in one block

• 1024 macro names simultaneously defined in one source file

• 31 parameters in one function definition or call

• 31 parameters in one macro definition or invocation

• 509 characters in a source line

• 509 characters in a string literal (after concatenation)

• 32767 bytes in an array or structure

• 8 nesting levels for #included files

• 257 case labels in a switch statement

• 127 members in a single structure or union

• 127 enumeration constants in a single enumeration

• 15 levels of nested structure or union definitions in a declaration

B.2 Numerical Limits

The ANSI Standard defines the minimum range of values that each scalar
type of object must be able to represent. For integral objects, the low end
and high end of these ranges are recorded in macro constants that are de­
fined in the limits.h header file. Implementations may, of course, support
larger ranges.

For floating-point types, the ANSI Standard defines a number of mac­
ros that describe an implementation's floating-point representation. These
macros are defined in the {loat.h header file.

8.2.1 Sizes of Integral Types

The following table lists the macro names defined in limits.h, their mean­
ings, and their minimum value for ANSI-conforming implementations:

www.manaraa.com

B.2 Numerical Limits 449

Macro Name Value Meaning

CHAR_BIT 8 minimum number of bits for smallest
object that is not a bit field (i.e., a byte)

SCHAR_MIN -127 minimum value for an object of type
signed char

SCHAR_MAX +127 maximum value for an object of type
signed char

UCHAR_MAX 255 maximum value for an object of type
unsigned char

CHAR_MIN minimum value for an object of type
char

CHAR_MAX maximum value for an object of type
char

SHRT_MIN -32767 minimum value for an object of type
short int

SHRT_MAX +32767 maximum value for an object of type
short int

USHRT_MAX 65535 maximum value for an object of type
unsigned short int

INT_MIN -32767 minimum value for an object of type int

INT_MAX +32767 maximum value for an object of type int

UINT_MAX 65535 maximum value for an object of type
unsigned int

LONG_MIN -2147483647 minimum value for an object of type
long int

LONG_MAX +2147483647 maximum value for an object of type
long int

ULONG_MAX 4294967295 maximum value for an object of type
unsigned long int

. If chars are signed by default, the value of CHAR_MIN should be the
same as that of SCHAR_MIN and the value of CHAR_MAX should be
the same as that of SCHAR_MAX. If chars are unsigned by default, the
value of CHAR_MIN should be zero, and the value of CHAR_MAX
should be the same as that of UCHAR_MAX.

www.manaraa.com

450 B: Implementation Limits

8.2.2 Characteristics of Floating-Point Types

The ANSI Standard defines the characteristics of floating-point types in
terms of a model that describes a representation of floating-point numbers
and values that provide information about an implementation's float­
ing-point arithmetic. We recommend that you read the ANSI Standard for
a detailed discussion of this model. In this section, we present information
about the limits for floating-point objects.

For any floating-point object, there are four limits:

max The largest positive value that can be represented.

mm The largest negative value that can be represented.

epsilon The minimum positive number, x, such that 1.0 + x != 1.0

precision The number of decimal digits of precision.

Each ANSI-conforming compiler provides values for these four limits
in names. These names, however, need not be constants-they can also
represent expressions evaluated at runtime. The names for each of the
floating-point types and the minimum values that an ANSI-conforming
compiler must support are shown below. Compilers are free to support
values greater in magnitude (absolute value) to those shown, with the
same size.

Maximum Value

float FLT_MAX le+37

double DBL_MAX le+37

long double LDBL_MAX le+37

Minimum Value

float FLT_MIN le-37

double DBL_MIN le-37

long double LDBL_MIN le-37

Epsilon

float FLT_EPSILON le-S

double DBL_EPSILON le-9

long double LDBL_EPSILON le-9

www.manaraa.com

B.2 Numerical Limits 451

Precision

float FLT_DIG 6

double DBL_DIG 10

long double LDBL_DIG 10

www.manaraa.com

c
Differences

Between the ANSI
and K&R Standards

This appendix summarizes the differences between the K&R standard and
the ANSI Standard. The references listed in each section point to other
parts of this book where you can find more information about the topic.

C.1 Source Translation Differences

The differences listed in this section relate to the lexical analysis stage of
compilation.

C.1.1 Name Length

ANSI: Compilers must support internal names of at least 31 characters
and external names of at least 6 characters.

K&R: Compilers must support internal names of at least 8 characters;
external names may be shorter.

Reference: Section 3.4: Names; Section 8.3: Global Variables

www.manaraa.com

C1 Source Translation Differences 453

C.1.2 Continuation Character

ANSI: The continuation character may be used to carry names as well as
string literals to the next line.

K&R: The continuation character may be used only to continue string
literals.

Reference: Section 3.8.1: Continuation Character

C.1.3 String Concatenation

ANSI: Supports this new feature, which causes the compiler to concate­
nate adjacent string literals into a single string.

K&R: Does not support this feature.

Reference: Section 7.10.6: String Concatenation

C.1.4 Trigraph Sequences

ANSI: Supports trigraph sequences for entering characters not available
on some keyboards.

K&R: Does not support trigraph sequences.

Reference: Section 4.2.3: Trigraph Sequences

C.1.5 Alert and Vertical Tab Escape Sequences

ANSI: Requires compilers to support \a (alert) and \v (vertical tab) escape
sequences.

K&R: Does not require compilers to support \a and \v.

Reference: Section 4.2.2: Escape Character Sequences

C.1.6 Hexadecimal Escape Sequences

ANSI: Supports escape sequences of the form:

\xhhh

where the h's are hexadecimal digits.

K&R: Does not support hexadecimal escape sequences.

Reference: Section 4.2.2: Escape Character Sequences

www.manaraa.com

454 C: Differences Between the ANSI and K&R Standards

C.2 Data Type Differences

The entries in this section cover differences in data types.

C.2.1 signed Type Specifier

ANSI: Supports the new keyword, signed, which explicitly makes an in­
tegral type signed.

K&R: Does not support the signed keyword.

Reference: Section 4.1.4: signed Integers

C.2.2 long double Type

ANSI: Supports long double type.

K&R: Does not support long double type.

Reference: Section 4.3: Floating-Point Types; Section 4.6.4 Mixing Float­
ing-Point Values

C.2.3 unsigned short, unsigned long, and unsigned char Types

ANSI: Explicitly requires C compilers to support these types.

K&R: Implies that these types are not legal.

Reference: Section 4.1.3: Unsigned Integers: Section 4.10: Typedefs

C.2.4 The void Type

ANSI: Included as a new type, an object of which cannot be used. Point­
ers to void may be converted to pointers of any other type object.

K&R: Not supported at all in the original version.

Reference: Section 4.9: The void Data Type.

C.2.5 Enumeration Types

ANSI: Supported as integer type.

K&R: Not supported in the original document, although added in a later
draft.

Reference: Section 4.8: Enumeration Types

www.manaraa.com

C2 Data Type Differences

C.2.6 Byte Length

ANSI: A byte must be at least 8 bits long.

K&R: Bytes have unspecified size.

Reference: Section 4.1.2: Different Types of Integers

C.2.7 Minimum Ranges for Integral Types

ANSI: Imposes ranges that must be met for each type.

K&R: Does not impose ranges but lists typical sizes.

455

Reference: Section 4.1.2: Different Types of Integers; Appendix B­
Implementation Limits

C.2.S Unsigned Constants

ANSI: Allows you to append a u or U to an integral constant to make it
unsigned.

K&R: Does not support unsigned constants.

Reference: Section 4.2.1: Unsigned Constants

C.2.9 "s" and "9" Not Allowed in Octal Constants

ANSI: Does not allow the digits 8 and 9 to be used in an octal constant.

K&R: Allows the use of 8 and 9 (which have octal values 10 and 11).

Reference: Section 4.1.2: Different Kinds of Integer Constants

C.2.10 float and long double Constants

ANSI: Allows you to append an f or F to a floating-point constant to
give it type float, or an I or L to give it type long double.

K&R: Does not support float and long double constants.

Reference: Section 4.4.1: float and long double Constants

C.2.11 Type of Integer Constants

ANSI: Has defined rules for determining type.

K&R: Rules for type determination are vague.

Reference: Section 4.2: Different Kinds of Integer Constants

www.manaraa.com

456 C: Differences Between the ANSI and K&R Standards

C.2.12 Conversion Rules for Mixing signed and unsigned
Types

ANSI: Uses value-preserving rules.

K&R: Uses sign-preserving rules.

Reference: Section 4.6.3: Unsigned Conversions

C.3 Statement Differences

There is only one significant difference concerning control flow state­
ments.

C.3.1 Controlling Expression of a switch Statement

ANSI: Allows the controlling expression of a switch statement to have
any integral type.

K&R: States that the controlling expression must have type into

Reference: Section 5.2.1: Syntax of a switch Statement

C.4 Expression Differences

This section lists several differences involving the way expressions are
evaluated.

C.4.1 Unsigned Conversions

ANSI: Uses value-preserving rules.

K&R: Uses sign-preserving rules.

Reference: Section 4.6.3: Unsigned Conversions

C.4.2 Unary Plus Operator

ANSI: Supports a unary plus operator.

K&R: Does not support a unary plus operator.

Reference: Section 6.2: Unary Plus and Minus Operators

www.manaraa.com

C4 Expression Differences 457

C.4.3 Float Expressions

ANSI: Does not require the compiler to convert all float operands to
double.

K&R: Requires conversion of all float operands to double.

Reference: Section 4.6.4: Mixing Floating-Point Values

C.4.4 Shifting by a long int and unsigned int

ANSI: States that the type of the shift count does not affect the type of
the left-hand operand.

K&R: Implies that shifting by a long int or unsigned int forces the com­
piler to convert the left operand to a long int or unsigned int, re­
spectively.

Reference: Section 6.9.1: Shift Operators

C.4.5 Structure Assignment

ANSI: Allows a structure to be assigned to a structure variable, provided
that the two operands share the same structure type.

K&R: Does not support structure assignment.

Reference: Section 9.1.12: Assigning Structures

C.4.6 Passing Structures as Arguments

ANSI: Supports passing structures as function arguments.

K&R: Does not allow structures to be passed as function arguments.
Reference: Section 9.1.10: Passing Structures as Function Arguments

C.4.7 Pointers to Functions

ANSI: Allows you to omit the dereferencing operator when invoking a
function through a pointer to a function. If pf is a function, then

pf () ;

is the same as

(*pf) ()

K&R: Implies that the dereferencing operator is required.

Reference: Section 10.3.3: Calling a Function Using Pointers

www.manaraa.com

458 C: Differences Between the ANSI and K&R Standards

C.5 Storage Class and Initialization Differences

The ANSI Standard includes several extensions to storage classes and ini­
tializations.

C.5.1 Function Prototypes

ANSI: Supports a new feature that allows you to declare the number and
type of arguments to a function defined elsewhere. Prototyping
enables the compiler to perform argument type-checking.

K&R: Not supported.

Reference: Section 10.2.5: Function Prototypes

C.5.2 The const Storage-Class Modifier

ANSI: Supports const, which indicates that the object's value may not be
changed.

K&R: Does not support con st.

Reference: Section 8.5: The const Storage-Class Modifier

C.5.3 The volatile Storage-Class Modifier

ANSI: Supports volatile, which indicates that the object's value can
change in ways that the compiler cannot predict.

K&R: Does not support volatile.

Reference: Section 8.6: The volatile Storage-Class Modifier

C.5.4 Definitions vs. Allusions

ANSI: Uses the presence or absence of an initializer to determine whether
a declaration is a definition or an allusion.

K&R: Uses the presence or absence of the extern specifier to determine
whether a declaration is a definition or an allusion.

Reference: Section 8.3.1: Definitions and Allusions

C.5.5 Initializing Automatic Arrays and Structures

ANSI: Permitted.

K&R: Not permitted.

www.manaraa.com

C6 Preprocessor Differences 459

Reference: Section 7.3: Initializing Arrays; Section 9.1.1: Initializing Struc­
tures

C.S.6 Scope of Function Arguments

ANSI: Arguments declared as function parameters have the same scope
as objects declared in the function's top-level block.

K&R: Function arguments may be hidden by declarations of the same
name in the top-level block.

Reference: Section 8.2.2: Function Scope

C.S.7 struct and union Name Spaces

ANSI: Each structure and union has its own name space, which means
that fields in different structures or unions can have the same
name without conflict.

K&R: Places all structure and union fields in the same name space.

Reference: Section 9.1.5: struct and union Name Spaces

C.S.8 Initialization of Union Members

ANSI: Supported-initializes the first member of the union.

K&R: Not supported.

Reference: Section 9.3.2: Initializing Unions

C.6 Preprocessor Differences

The preprocessor defined by the ANSI Standard differs substantially from
the preprocessor described by the K&R Standard.

C.6.1 Formatting Preprocessor Lines

ANSI: Requires the pound sign to be the first nonspace character on a
line.

K&R: Requires the pound sign to be the first character on a line.

Reference: Chapter 11: The C Preprocessor.

www.manaraa.com

460 C: Differences Between the ANSI and K&R Standards

C.6.2 Recursive Macro Definitions

ANSI: Prevents infinite recursion of a macro by inhibiting the expansion
of a macro name in its own definition.

K&R: Provides no mechanism to avoid infinite recursion of a macro.

Reference: Section 11.1.3: Using a Macro Name in Its Own Definition

C.6.3 Redefining Macro Names

ANSI: Requires an intervening #undef of the macro name if the redefini­
tion is different from the current definition.

K&R: Does not require an intervening #undef.

Reference: Section 11.1.2: Removing a Macro Definition

C.6.4 String Producer

ANSI: Supports a new preprocessor operator (#) that surrounds its ar­
gument with quotes when it expands.

K&R: Does not support the string-producing operator.

Reference: Section 11.1.6: String Producer

C.6.5 Built-In Macros

ANSI: Requires implementations to define five built-in macros:
_LINE-, _FILE-, _TIME-, _DATE-, _STDC_.

K&R: Does not require implementations to define any built-in macros
(nor does it prohibit them from doing so).

Reference: Section 11.1.5: Built-In Macros

C.6.6 Token Pasting

ANSI: Supports a new preprocessor operator (##) that pastes two pre­
processor tokens.

K&R: Does not support the paste operator.

Reference: Section 11.1.7: Token Pasting

C.6.7 The #elif Directive

ANSI: Supports #elif.

K&R: Does not support #elif.

www.manaraa.com

C6 Preprocessor Differences

Reference: Section 11.2: Conditional Compilation

C.6.8 The defined Operator

ANSI: Supports the defined preprocessor operator.

K&R: Does not support defined.

Reference: Section 11.2.1: Testing Macro Existence

C.6.9 The #error Directive

461

ANSI: Supports #error, which enables the output of error messages dur­
ing the preprocessing stage of compilation.

K&R: Does not support #error.

Reference: Section 11.4.1: The #error Directive

C.6.10 The #pragma Directive

ANSI: Supports #pragma, which allows implementations to add their
own preprocessing directives.

K&R: Does not support #pragma.

Reference: Section 11.4.2: The #pragma Directive

www.manaraa.com

D
Reserved Names

The C language, as defined by the ANSI Standard, contains a number of
reserved words and names that you should not use as private variable
names. The reserved words fall into several categories:

• Keywords-You may not use keywords for names of objects.

• Runtime Function Names-You should avoid using function
names, except when you want to write your own version of a stan­
dard function or macro.

• Macro Names-The runtime library header files contain defini­
tions for many constant names. You should avoid using these
names for variables.

• Type Names-Some of the header files define types (with typedefs)
that are applied to the arguments or the function return type.

• Preprocessor Command Names-In general, the preprocessor
names do not create conflicts because they must be preceded by a
pound sign, which makes their meaning unambiguous. However,
you cannot write something like

#define define

Table D-l lists all of these reserved names. For macros and functions,
the table also shows where they are defined. Although it is possible to

avoid naming conflicts by not including the header file in which a reserved
name is defined, this is a dangerous practice because you may need to in­
clude the header file at a later date. We recommend that you avoid using
these names for private variables.

In addition to the names listed in Table D-l, you should also consider
all names beginning with an underscore to be reserved for system use. Fi-

www.manaraa.com

D: Reserved Names 463

nally, ANSI has reserved all names beginning with two underscores, or an
underscore followed by an uppercase letter, for future use.

DATE

FILE

_IOFBF

_IOLBF

_IONBF

LINE

STDC

TIME

abort

abs

aeos

asetime

asin

assert

atan

atan2

atexit

atof

atoi

atol

auto

break

bseareh

BUFSIZ

ealioe

Table D-1: Reserved Names

macro defined by the implementation

macro defined by the implementation

macro defined by the implementation

macro defined by the implementation

macro defined by the implementation

macro defined by the implementation

macro defined by the implementation

macro defined by the implementation

function defined in assert.h

function defined in stdlib.h

function defined in math.h

function defined in time.h

function defined in math.h

macro defined in assert.h

function defined in math.h

function defined in math.h

function defined in stdlib.h

function defined in stdlib.h

function defined in stdlib.h

function defined in stdlib.h

keyword (storage class specifier)

keyword (statement)

function defined in stdlib.h

macro defined in stdio.h

function defined in stdlib.h

www.manaraa.com

464 D: Reserved Names

Table D-1 (continued)

case keyword (label)

ceil function defined in math.h

CHAR_BIT macro defined in limits.h

CHAR_MAX macro defined in limits.h

CHAR_MIN macro defined in limits.h

clearerr function defined in stdio.h

clock function defined in time.h

clock_t type defined in time.h

CLOCKS_PER_SEC macro defined in time.h

const keyword (storage class modifier)

continue keyword (statement)

cos function defined in math.h

cosh function defined in math.h

ctime function defined in time.h

DBL_EPSILON macro defined in {loat.h

DBL_MANT_DIG macro defined in {loat.h

DBL_DIG macro defined in {loat.h

DBL_MIN macro defined in {loat.h

DBL_MIN_EXP macro defined in {loat.h

DBL_MIN_l0_EXP macro defined in {loat.h

DBL_MAX macro defined in {loat.h

DBL_MAX_EXP macro defined in {loat.h

DBL_MAX_l0_EXP macro defined in {loat.h

default keyword (label)

defined preprocessing operator

difftime function defined in time.h

div_t type defined in stdlib.h

do keyword (statement)

double keyword (type specifier)

www.manaraa.com

D: Reserved Names 465

Table D-1 (continued)

EDOM macro defined in (Ioat.h

else keyword (statement)

enum keyword (type specifier)

EOF macro defined in stdio.h

ERANGE macro defined in (Ioat.h

ermo macro defined in stddefh

exit function defined in stdlib.h

exp function defined in math.h

extern keyword (storage class specifier)

fabs function defined in math.h

fclose function defined in stdio.h

feof function defined in stdio.h

ferror function defined in stdio.h

fflush function defined in stdio.h

fgetc function defined in stdio.h

fgetpos function defined in stdio.h

fgets function defined in stdio.h

FILE type defined in stdio.h

float keyword (type specifier)

floor function defined in math.h

FLT_DIG macro defined in (Ioat.h

FLT _EPSILON macro defined in (Ioat.h

FLT _MANT _DIG macro defined in (Ioat.h

FLT_MAX macro defined in (Ioat.h

FLT _MAX_EXP macro defined in (Ioat.h

FLT_MAX_I0_EXP macro defined in (Ioat.h

FLT_MIN macro defined in (Ioat.h

FLT _MIN_EXP macro defined in (Ioat.h

FLT_MIN_I0_EXP macro defined in float.h

www.manaraa.com

466 D: Reserved Names

Table 0-1 (continued)

FLT_RADIX macro defined in (loat.h

FLT_ROUNDS macro defined in (loat.h

£mod function defined in math.h

fopen function defined in stdio.h

for keyword (statement)

fpos_t type defined in stdio.h

fprintf function defined in stdio.h

fputc function defined in stdio.h

fputs function defined in stdio.h

fread function defined in stdio.h

free function defined in stdlib.h

freopen function defined in stdio.h

frexp function defined in math.h

fscanf function defined in stdio.h

fseek function defined in stdio.h

fsetpos function defined in stdio.h

ftell function defined in stdio.h

fwrite function defined in stdio.h

getc function defined in stdio.h

getchar function defined in stdio.h

getenv function defined in stdlib.h

gets function defined in stdio.h

gmtime function defined in stdlib.h

goto keyword (statement)

HUGE_VAL macro defined in math.h

if keyword (statement)

int keyword (type specifier)

INT_MAX macro defined in limits.h

INT_MIN macro defined in limits.h

www.manaraa.com

D: Reserved Names 467

Table D-1 (continued)

isalnum function defined in ctype.h

isalpha function defined in ctype.h

iscntrl function defined in ctype.h

isdigit function defined in ctype.h

isgraph function defined in ctype.h

islower function defined in ctype.h

isprint function defined in ctype.h

ispunct function defined in ctype.h

isspace function defined in ctype.h

isupper function defined in ctype.h

isxdigit function defined in ctype.h

jmp_buf type defined in setjmp.h

L_tmpnam macro defined in stdio.h

labs function defined in math.h

LDBL_DIG macro defined in (loat.h

LDBL_EPSILON macro defined in (loat.h

LDBL_MANT _DIG macro defined in (loat.h

LDBL_MAX macro defined in (loat.h

LDBL_MAX_EXP macro defined in (loat.h

LDBL_MAX_10_EXP macro defined in (loat.h

LDBL_MIN macro defined in (loat.h

LDBL_MIN_EXP macro defined in (loat.h

LDBL_MIN_10_EXP macro defined in (loat.h

Idexp function defined in math.h

Idiv function defined in stdlib.h

Idiv_t type defined in stdlib.h

localtime function defined in time.h

log function defined in math.h

log10 function defined in math.h

www.manaraa.com

468

long

Iongjmp

LONG_MAX

LONG_MIN

main

malloe

memchr

mememp

memcpy

memmove

memset

mktime

modf

NDEBUG

NULL

offsetof

OPEN_MAX

perror

pow

printf

ptrdifCt

pute

putehar

puts

qsort

raIse

rand

RAND_MAX

D: Reserved Names

Table D-1 (continued)

keyword (type specifier)

function defined in setjmp.h

macro defined in limits.h

macro defined in limits.h

function defined by the implementa­
tion

function defined in stdlib.h

function defined in string.h

function defined in string.h

function defined in string.h

function defined in string.h

function defined in string.h

function defined in time.h

function defined in math.h

macro defined in assert.h

macro defined in stddef.h

macro defined in stddef.h

macro defined in stdio.h

function defined in stdio.h

function defined in math.h

function defined in stdio.h

type defined in stddef.h

function defined in stdio.h

function defined in stdio.h

function defined in stdio.h

function defined in stdlib.h

function defined in signal.h

function defined in stdlib.h

macro defined in stdlib.h

www.manaraa.com

0: Reserved Names 469

Table D-1 (continued)

realloe function defined in stdlib.h

register keyword (storage class specifier)

remove function defined in stdio.h

rename function defined in stdio.h

return keyword (statement)

rewind function defined in stdio.h

SCHAR_MAX macro defined in limits.h

SCHAR_MIN macro defined in limits.h

SEEK_CUR macro defined in stdio.h

SEEK_END macro defined in stdio.h

SEEK_SET macro defined in stdio.h

setbuf function defined in stdio.h

setjmp function defined in setjmp.h

setlocale function defined in locale.h

setvbuf function defined in stdio.h

short keyword (type specifier)

SHRT_MAX macro defined in limits.h

SHRT_MIN macro defined in limits.h

si~atomie_t type defined in signal.h

SIG_DFL macro defined in signal.h

SIG_ERR macro defined in signal.h

SIG_IGN macro defined in signal.h

SIGABRT macro defined in signal.h

SIGFPE macro defined in signal.h

SIGILL macro defined in signal.h

SIGINT macro defined in signal.h

signal function defined in signal.h

signed keyword (type specifier)

SIGSEGV macro defined in signal.h

www.manaraa.com

470 D: Reserved Names

Table D-1 (continued)

SIGTERM macro defined in signal.h

sm function defined in math.h

sinh function defined in math.h

size_t type defined in stddef.h

sizeof keyword (operator)

sprintf function defined in stdio.h

sqrt function defined in math.h

srand function defined in stdlib.h

sscanf function defined in stdio.h

static keyword (storage class specifier)

stderr file pointer defined by the implementa-
tion

stdin file pointer defined by the implementa-
tion

stdout file pointer defined by the implementa-
tion

streat function defined in string.h

strehr function defined in string.h

stremp function defined in string.h

streoll function defined in string.h

strcpy function defined in string.h

strcspn function defined in string.h

strerror function defined in string.h

strftime function defined in time.h

strlen function defined in string.h

strncat function defined in string.h

stmcmp function defined in string.h

stmcpy function defined in string.h

strpbrk function defined in string.h

strrchr function defined in string.h

www.manaraa.com

D: Reserved Names 471

Table D-1 (continued)

strspn function defined in string.h

strstr function defined in string.h

strtod function defined in string.h

strtok function defined in string.h

strtol function defined in string.h

strtoul function defined in string.h

switch keyword (statement)

system function defined in stdlib.h

tan function defined in math.h

tanh function defined in math.h

time function defined in time.h

time_t type defined in time.h

tm type defined in time.h

TMP_MAX macro defined in stdio.h

tmpfile function defined in stdio.h

tmpnam function defined in stdio.h

tolower function defined in ctype.h

toupper function defined in ctype.h

typedef keyword (type specifier)

UCHAR_MAX macro defined in limits.h

OINT_MAX macro defined in limits.h

ULONG_MAX macro defined in limits.h

ungetc function defined in stdio.h

unsigned keyword (type specifier)

USHRT_MAX macro defined in limits.h

va_arg macro defined in stdarg.h

va_end function defined in stdarg.h

va_list type defined in stdarg.h

va_start macro defined in stdarg.h

www.manaraa.com

472

vfprintf

void

volatile

vprintf

vsprintf

wchar_t

while

D: Reserved Names

Table D-1 (continued)

function defined in stdio.h

keyword (type specifier)

keyword (storage class modifier)

function defined in stdio.h

function defined in stdio.h

macro defined in stddefh

keyword (statement)

www.manaraa.com

E
ASCII Codes

od dec hex char od dec hex char

0 0 0 NUL"@ 21 17 11 DCl"Q

1 1 1 SOH "A 22 18 12 DC2"R

2 2 2 STX "B 23 19 13 DC3 "S

3 3 3 ETX"C 24 20 14 DC4"T

4 4 4 EQT"D 25 21 15 NAK"U

5 5 5 ENQ"F 26 22 16 SYN"V

6 6 6 ACK "F 27 23 17 ETB "W

7 7 7 BEL "G 30 24 18 CAN "X

10 8 8 BS "H 31 25 19 EM "Y

11 9 9 TAB "I 32 26 lA SUB "Z

12 10 A LF "J 33 27 1B ESC A[

13 11 B VT"K 34 28 lC FS "I

14 12 C FF "L 35 29 1D GS "J
15 13 D VR"M 36 30 IE RS AA

16 14 E SO"N 37 31 IF US" -
17 15 F SI "0 40 32 20 SPACE

20 16 10 DLE "P 41 33 21

www.manaraa.com

474 E: ASCII Codes

oct dec hex char oct dec hex char

42 34 22 101 65 41 A

43 35 23 # 102 66 42 B

44 36 24 $ 103 67 43 C

45 37 25 % 104 68 44 D

46 38 26 & 105 69 45 E

47 39 27 106 70 46 F

50 40 28 107 71 47 G

51 41 29 110 72 48 H

52 42 2A * 111 73 49

53 43 2B + 112 74 4A J
54 44 2C 113 75 4B K

55 45 2D 114 76 4C L

56 46 2E 115 77 4D M

57 47 2F / 116 78 4E N

60 48 30 0 117 79 4F 0

61 49 31 1 120 80 50 P

62 50 32 2 121 81 51 Q

63 51 33 3 122 82 52 R

64 52 34 4 123 83 53 S

65 53 35 5 124 84 54 T

66 54 36 6 125 85 55 U

67 55 37 7 126 86 56 V

70 56 38 8 127 87 57 W

71 57 39 9 130 88 58 X

72 58 3A 131 89 59 Y

73 59 3B 132 90 SA Z

74 60 3C < 133 91 5B

75 61 3D = 134 92 5C

76 62 3E > 135 93 5D

77 63 3F 136 94 5E A

100 64 40 @ 137 95 SF

www.manaraa.com

E: ASCII Codes 475

od dec hex char od dec hex char

140 96 60 160 112 70 P

141 97 61 a 161 113 71 q

142 98 62 b 162 114 72 r

143 99 63 c 163 115 73 s

144 100 64 d 164 116 74

145 101 65 e 165 117 75 u

146 102 66 f 166 118 76 v

147 103 67 g 167 119 77 w

150 104 68 h 170 120 78 x

151 105 69 171 121 79 Y

152 106 6A j 172 122 7A z

153 107 6B k 173 123 7B

154 108 6C 174 124 7C

155 109 6D m 175 125 7D

156 110 6E n 176 126 7E

157 111 6F 0 177 127 7F del

www.manaraa.com

Symbols

!=

decrement operator, 142-43

tmary minus operator, 132-33

single quote, 64
single quote

printing, 68

logical negation operator, 146

not equal to operator, 96, 145

double quotes, 320
surrounding filenames, 320

preprocessor symbol, 53
trigraph sequence, 69

operator, 315

%
remainder operator, 134-42

%c format specifier, 50

%d format specifier, 50,272

%f format specifier, 50

%0 format specifier, 50

Index

%p print specifier, 86

%s format specifier, 50, 186

%x format specifier, 50

&
address of operator, 85, 161,272

in scanfO calls, 52
bitwise AND operator, 150

&&
logical AND operator, 146

&=

o

*

AND assign operator, 157

cast operator, 158
function call, 47
macro calls, 307
parenthesized expressions, 128--30

dereference operator, 87, 161

*1, end comment, 45

comma operator, 143--44

decimal point, 69
dot operator, 161

www.manaraa.com

Index

ellipsis, 283

.c filename extension, 34

.h filename extension, 35

/*, begin comment, 45

bit fields, 247-51
statement label, 121
trigraph sequence, 69

mistakenly used to end macro
definition, 307

; semicolon

[]

"

misplaced,95

conditional operator, 160

array operator, 161

trigraph sequence, 69

bitwise exclusive OR operator, 150
trigraph sequence, 69

"=
XOR assign operator, 157

_DA1E_macro, 312

_FILE_macro, 312

LINE macro, 312

_STDC_macro, 312

_TIME_macro, 312

_IOFBF constant, 343

jOFBFmacro, 419

_IOLBF constant, 343

jOLBF macro, 419

jONBF constant, 343

_IONBF macro, 419

{

II
trigraph sequence, 69

compound statement, 98-99
missing braces, 102

function body, 36
initializing arrays, 168
initializing structures, 239

477

missing in compound statement, 102

bitwise inclusive OR operator, 150
trigraph sequence, 69

logical OR operator, 146

1=

+

OR assign operator, 157

trigraph sequence, 69

bitwise complement operator, 150
trigraph sequence, 69

unary plus operator, 132-33

++
increment operator, 142-43

<
less than operator, 96,145

«
left shift operator, 150

«=
left shift assign operator, 157

<=
less than or equal to operator, 96, 145

equal to operator, 96,145

->

right arrow operator, 161

>
greater than operator, 96, 145

>=

»

greater than or equal to operator, 96,
145

right shift operator, 150

»=
right shift assign operator, 157

-A-
\a

alert, 68

abort signal, 394

www.manaraa.com

478

abort() function, 380, 394, 428

aborting a program, 123

abs() function, 431

absolute values
abs() function, 431
fabs() function, 391
labs() function, 431

abstraction, 22
of programming, 18

access modes, 332, 400

acos() function, 389

actualar~~,36,270,271
compatibility, 279
conversion of, 276

Ada programming language, 368

additive operators, 129, 133

address of operator
&,85

address of operator &, 161, 272
in scanf() calls, 52

addresses
finding, 85-86
of variables, 85
passing as arguments, 272
storing, 86
writing, 86

aggregate data types, 57

Aho,368

alert
escape sequence \a, 68

algorithm, 32

rugori~,14,179-81

choosing efficient, 365
sorting, 179,291

alignment
natural, 246
structure member, 245-47

allocation. See memory allocation

allusions, 222-24

alpha test, 27

alphabets
for different languages, 383

American National Standards lnstitute.
See ANSI Standard

Index

American Standard Code for Information
Interchange. See ASCII character set

ampersand. See address-of operator

anruysis
lexical, 452
performance, 28

AND operator
bitwise &, 150
logical &&, 146

AND-assign operator &=, 157

ANSI standard, 6-7
differences from K&R standard, 452-

61
rationale of, 6

arccosine
acos() function, 389

arc sine
asin() function, 389

arctangent
atan() function, 389

architectural design, 13,361-62

argc,296

argument type, 37

arguments, 36
acturu, 36,270
data type of, 37
declaring, 275-78
formal, 36, 270
multidimensional arrays, 199-200
passing, 27G-72
passing arrays, 177-79,253
passing pointers, 173-74
passing structures, 252-53
to macros, 308
variable number of, 395-97

argv,296

arithmetic assignment operators, 136-39

arithmetic data types, 57

arithmetic functions
integer, 431-32

arithmetic shift, 152

array elements
accessing with pointers, 174-76
referencing, 165

array name

www.manaraa.com

Index 479

interpretation of, 176 assignment statements, 43
naked, 176 assignment suppression flag

array names, 164, 165 in scanf() function, 415

array operator [J, 161 assignments

arraysize,165 multiple, 137

arrays, 164-211 associativity

base address of, 176 of operators, 128-32

bounds checking, 181 associativity of operators, 129
declaring, 165-66 atan() function, 389
finding number of elements in. See

atexit() function, 428 initial element, 165
initializing,168 atof() function, 423

memsetO function, 433 atoi() function, 424
multidimensional, 194-201 atol() function, 424

initializing, 197-98
passing as function arguments, 199- auto keyword, 213, 230

200 automatic build, 20
referencing elements, 199 automatic conversions, 72-79
storage, 197

nonoverlapping, 283 automatic duration, 213

of chars. See strings
of pointers, 202-5

-B-of structures, 241-42
passing as function arguments, 177-79

\b size of, 165
storage of, 167-68 backspace, 68

syntax of declaration, 165 B programming language, 5

ASCll chracter set, 63 back-end, 14

ASCll codes, 473 backslash,69

asctime() function, 442 backslash

asin() function, 389 printing, 68

assembler, 2 backspace

assembly language, 2
escape character sequence \b, 68

bar
assert() function, 380 trigraph sequence, 69
assert.h header file, 158, 380 base address
assignment, 38 of arrays, 176

string, 183-85 base type
assignment conversions. See of bit fields, 248
assignment operator = BCD form, 269

confusing with equal to operator, 96 beta test, 27
erroneous use in macro definitions,

binary format, 328 309

assignment operators binary numbers, 1

arithmetic, 136-39 binary operators, 73, 97
bitwise,157 binary stream modes, 332

www.manaraa.com

480

binary tree, 365

binder. See linker

binding. See associativity of operators

bit, 1

bit fields, 247-51
base type of, 248
declaring, 248
memory allocation of, 248
portability of, 250

bit-manipulation operators, 150-57

bitwise AND operator &, 150

bitwise assignment operators, 157

bitwise complement operator -, 150

bitwise exclusive OR operator 1\, 150

bitwise inclusive OR operator I, 150

block buffering, 330

block scope, 217, 219-20

blocks, 329

Boole, George, 97

Boolean data types, 97

Boolean expressions, 97

bounds checking, 181

braces. See compound statements
left

trigraph sequence, 69
right

trigraph sequence, 69

brackets
left, 69
right

trigraph sequence, 69

break statement, 120-21
to exit switch, 104.

bridge metaphor, 29-30

Brodie, James, 6

Brooks, Fredrick P., 17

Brooks's law, 18

bsearchO function, 430

bubble sort, 179

buffer,329
keyboard, 109

buffering, 329-30

block, 330
buffer manager, 330
line, 330

buffers
flushing, 330
setting size of

setbufO function, 343

bug alerts

Index

binding of macro argwnents, 314
comparing floating-point values. See
confusing = with ==, 96
confusing typedef with #define, 83
dual meanings of static. See
ending a macro definition with a

semicolon, 307
integer division. See
misplaced semicolons, 95
missing braces, 102
mixing signed and unsigend types, 80
no nested comments, 48
off-by-one errors. See
opening a file, 335
passing structures. See
referencing elements in a

multidimensional array, 199
side effects, 150
side effects in macro arguements, 311
space between left parthesis and macro

name, 310
the dangling else, 101
unexpected expression evaluation, 132
using = to define a macro, 309. See
walking off the end of an array, 181

bugs, 25

build file, 20

built-in macros, 312

Built-In Macros, 313

--C-

C interpreter
software engineering case study, 355-

75

C programming language
historyo~5
nature of, 8

C++,7,368

www.manaraa.com

Index 481

calculator program, 118-20 characters, 63-65

call by reference, 270 alphabetic, 382

call by value, 270
control, 382
lowercase, 382

callocO function, 232, 427 multibyte, 65
caret printable, 382

trigraph sequence, 69 uppercase, 382

carriage return character-testing functions, 381
escape character sequence \r, 68 chars

cascading if statement. See nested if vs. strings, 185-86
statements checksum function, 124

CASE. See Computer-Aided Engineering OeanC, 7
case label, 102 reserved keywords, 42

case labels dearerrO function, 331, 397
maximum number of, 448 dockO function, 442

case sensitivity. See dockj type, 441
case-mapping functions, 381 CLOCKS]ER_SEC macro, 441

runtime library, 382 closing files, 335
cast operator 0, 158 coding stage, 24-25

confusing with unions. See

casts, 80-81
collating sequences, 195

of function return values, 233 comma operator" 143-44

to void. See. See command line arguments, 296
to volatile, 229 command prompt, 34

cc command, 34 comments, 45-46
ceilO function, 390 no nesting, 48

char type specifier, 63 comparing floating-point values, 144

CHAR_BIT macro, 449 comparison expressions, 96-98

CHAR_MAX macro, 449 comparison operators, 96

CHAR_MIN macro, 449 compilation

character arrays. See strings conditional,316

character constants, 64
syntax of, 316

in UNIX environment, 34
character handling compiler, 3

character testing functions, 381
runtime library, 381-82 compile-time errors, 78

character set compiling source files, 33

EBCDIC. See EBCDIC character set complement operator

character sets bitwise -, 150

ASCII. See ASCII character set compound statements, 98-99

character-handling functions Computer-Aided Software Engineering
case-mapping functions, 382 (CASE),369

characteristic conditional branching, 92-107
of floating-point constants, 71 conditional compilation, 316

www.manaraa.com

482

syntax o~ 316

conditional operator ?:, 160

const pointers, 227

const sroragKlass modifier, 231. 226-27

constant
string, 182

constant expressions, 127

constants, 39-40
character, 64. See
decimal, 65
enumeration, 81
floating-point, 71
hexadecimal,65
integer, 65-69
naming, 54
octal, 65
unsigned, 67

continuation character, 51

continue statement, 120-21

control characters, 158, 382

controlflovv, 92-125

conversion character
in printfO function, 407

conversion characters
in print(O function, 408
in scanf{) function, 416

conversion specifiers
in print({) function, 407

conversions
automatic, 72-79
casts, 80-81
floating-point to floating-point, 77-79
floating-point to integer, 77-79
implicit, 73-75
in expressions, 73-75
integer to floating-point, 77-79
signed and unsigned, 80
unsigned, 76-77

conversions.
integral widening, 73

cos{) function, 389

cosh{) function, 389

ctime{) function, 443

CTRL-C control character, 123

ctype.h header file, 378

currency symbo~ 385

-0-

Dam, A Van, 158

dang1ing else, 96, 101

data
reading, 335-40
writing, 335-40

data structures, 14
choosing efficient, 365

data type, 57
integer, 60-65

data type qualifiers, 58
signed, 63
unsigned, 63

data types
aggregate, 57
arithmetic, 57
character,63-65
enumeration, 81-83
floating-point, 69-71
hierarchy o~ 58
int, 60
longint, 61
mixing, 72-79
of functions, 59
scalar, 57-91

hierarchyof,74
keyvvords, 59

short int, 61
void, 57, 83-84

date and time functions, 441-46

Date, C. j., 15

dates
different vvays of displaying, 383

DBLJ)IG macro, 451

DBL.,.EPSILON macro, 450

DBL_MAX macro, 450

DBL_MIN macro, 450

debuggers, 26

debugging, 25, 372

debugging code

Index

www.manaraa.com

Index

adding to source files, 219

decimal constants, 65

decimal point, 69
different representations of, 385
representing in different ways, 383

decimal point character, 383

declarations, 58-65
allusions, 222-24
array, 165-66
complex, 297-303

composing, 299
deciphering, 298

definitions, 222-24
forward referencing, 245
string, 182-83

decrement operators, 142-43
precedence of, 142

decryption, 169-70

default label, 102

#define directive, 305-15, 54, 305-15
confusing with Typedef, 83

defined preprocessor operator, 319

definitions, 222-24
tentative, 223

dependency lines, 371

dereference operator
*,87

dereference operator *, 161

design
detailed, 365-69

detailed design, 365-69

device registers, 228

diagnostics
runtime library, 380-81

di(ftimeO function, 443

Dijkstra, E. W., 122

divO function, 431

div _t type, 423

division
integer, 137

do ••. while statement, 109-10
syntax, 110

docurnentation,372-73

domain errors, 387

dot operator., 161

double quotes, 182
printing, 68
surrounding filenames, 320

double type specifier, 69

double-precision, 69

doubly linked lists, 256

duration, 213-17
automatic, 213
definition, 212
fixed, 213, 216-17

dynamic memory allocation, 231-35

-E-
EBCDIC character set, 63

echo command, 296

ecvtO function, 387

EDOM macro, 387

efficiency, 4, 365
and arrays, 165
and bit fields, 250
and buffering, 329
and readability, 190,204
and recursion, 296
and volatile specifier, 229
choosing algorithms, 365
choosing data structures, 365
of sorting algorithms, 179

483

returning pointers to structures, 254
strength reduction, 209
using arithmetic assignment operators,

305-15
using pointers to pointers, 208

element. See array elements

#elif directive, 316

#else directive, 316

ellipsis
... ,283

else
dangling, 96, 101

else if statement, 99

else keyword, 93

www.manaraa.com

484 Index

empty staements. See null statements exporting information, 17

encryption, 169-70 expressions,43-44,126-63

#endif directive, 316 Boolean, 97

end-of-file flag, 331
comparison, 96-98
constant, 127

engine, 14 conversions in, 73-75
entropy, 28 float, 127

enum type specifier, 81-83,267 integral,127

enumeration type, 81-83
omitting in for statement, 11+.15
pointer, 127

enumeration variables, 267-69 relational

environmentfilnctions, 428-30 side effects, 150

EOF, 108,331 Extended Binary-Coded Decimal

epsilon, 123,450
Interchange Code. See EBCDIC
character set

equal to operator ==,96,145

ERANCE macro, 387
extern keyword,

errno,351,378
extern specifier, 222, 230, 281

errno macro, 380

errno variable, 332 -F-
errno.h header file, 378

\f
errno.h header file., 332 form-feed, 68
#error directive, 323 fabs() filnction, 391
error flag, 331 fclose() filnction, 335, 397
error handling

JlO,331
fcvtO function, 387

runtime library, 380
feof() filnction, 331, 398

error messages, 380, 406, 435, 461
ferror() filnction, 331, 398

escape character sequences, 67-68
fflush() filnction, 398

escape sequence, 51
fgetc() function, 336, 399

evaluation
fgetpos() filnction, 399

order of, 130, 131-32 fgets() filnction, 338, 399

executable code, 33 field widths

executable program, 34
in printf() filnction, 411

loading, 35
in scanfO filnction, 415

executable statement, 38
fields. See structure members

exit() filnction, 47, 429
file management filnctions, 352

EXIT]AILURE macro, 423
file pointer, 327, 333

EXIT_SUCCESS macro, 423
file position indicator, 328, 333, 337,

344,353,399,400,402,403,404,
expO function, 388 418,421
exponent, 71 file scope, 217, 220-21
exponential filnctions FILE structure, 327

runtime library, 388
filenames

www.manaraa.com

Index 485

.c extension, 34 fonn-feed

.h extension, 35 escape character sequence \f, 68

files forward referencing, 245
closing, 332-35 fprintf() function, 401
opening, 332-35

fputc() function, 336, 402
FILO,269

first in, last out (FILO) queues, 269
fputs() function, 338, 402

fixed duration, 212, 213, 216-17
(read() function, 339, 402

initialization of variables with, 216 (reeO function, 232, 427

flag characters
(reopen() function, 403

in printfO function, 410 (rexp() function, 388

'float constants, 71 front-end, 14

float expressions, 127 fscanf() function, 403

float type specifier, 69 fseek() function, 344, 403

float.h header file, 378 fsetpos() function, 404

floating-point data types, 69-71 fte//() function, 344, 404

characteristics of, 450 function allusions, 272, 278-82
mixing with integers, 77-79 syntax, 281

floating-point exception signal function body, 36,276
SIGFPE macro, 394 function calls, 272, 282-83

floating-point overflow, 387 syntax, 284

floating-point values function definitions, 272
comparing, 144 prototype form, 273

(/oorO function, 391 syntax, 273--74

FLLDIG macro, 451
traditional form, 274

FLT_EPSILON macro, 450 function invocation. See function calls

FLT_MAX macro, 450 function names, 36

FLLMIN macro, 450
choosing,275
reserved, 377

flushing buffers, 330, 397 function prototypes, 37
(modO function, 391 function scope, 217, 220
Foley, 15 functions,21,35-38
fopenO function, 328, 332, 400 anatomy of, 36-38

for statement, 110-14 calling, 272-84

null statements, 115-16 calling with pointers, 286

omitting expressions, 114-15 declaring, 272-84

syntax, 111 pointers to, 284-93

formal arguments, 36, 270
returning, 291

return type, 275
format modifiers return type agreement, 286

in printf() function, 407 return type of
format specifiers, 50 declaring, 59

format string, 50 vs. macros, 311, 379

formatting source files, 44-46 fwrite() function, 339, 405

www.manaraa.com

486 Index

-G- hyperbolic cosine
cosh() function, 389

garbage values, 167,215 hyperbolic functions

gcvt() function, 387 runti[nelibnuy,387

hyperbolic tangent general utilities
tanh() function, 389 runbti[nelibnuy,422-32

generic pointers, 233

getc() function, 336, 405 -1-
getchar() function, 405

I/O, 326-54 getenv() function, 429
binary fonnat, 328

gets() function, 192,406 error handling, 331
global variables, 217, 220-24 error-handling functions, 351

declaring, 224 file management functions, 352
once characxter at a time, 336 gmtime() function, 443
one block at a time, 339

goto labels one line at a ti[ne, 338
scope of, 220

randoma~,344-53
goto statement, 121-22 runti[ne libnuy functions, 397-422
greater than operator >, 96, 145 selecting a method, 341-43

text fonnat, 328 greater than or equal to operator >=, 96,
to files, 352 145
unbuffered, 343

grouping
I/O functions of operators, 128

runti[nelibnuy,397-422

idempotent header files, 377
-H- identifier. See names

ldiv() function, 432
hardware, 1

if statement, 92-95
hash table, 366

nested, 99
header files, 35, 371 syntax, 93

runti[nelibnuy,377-378 #if directive, 316
heap sort algorithms, 291 #ifdef directive, 319
hexadecimal constants, 65 #ifndef directive, 319
high-level programming languages, 3 illegal instruction signal
hobgoblin SIGILL macro, 394

of software engineers, 22
implementation limits, 447-51

holes implicit conversions, 73-75
in structures, 245

include facility, 320
Hopcroft, 368

#include directive, 53, 320
Hopper, lieutenant Grace, 25

increment operators, 142-43
horizontal tab precedence of, 142

escape character sequence \t, 68
indentation, 52

HUGE_VAL macro, 387
misleading, 102

www.manaraa.com

Index

with nested loops, 101, 117

index, 164

UUllrireloops,122-25

infonnation hiding, 17, 368-69

initial element, 165

initialization, 71-72
global variable, 321
multidimensional array, 197-98
pointer, 89
structure, 239-40
union, 265-66

initializing arrays, 168

input and output, 326-54

instruction set, 1

int type specifier, 36, 58, 60

INCMAX macro, 449

/NT flIN macro, 449

integer arithmetic functions, 431-32

integer constants, 65-69

integer overflow, 76

integer types
mixing with floating-point types, 77-

79

inregers, 60-65
dividing, 137
mixing, 75-76
signed, 63
unsigned, 62

integral expressions, 127

integral promotion. See integral widening
conversions

integral widening conversions., 73

interface, 17

inrerpreter
software engineering case study, 355-

75

inrerrupt signal
SIGINTmacro,394

intialization, 71-72

10
to stdin and stdout, 350

isalnum() function, 382

isalpha() function, 382

iscntrl() function, 382

isdigit() function, 382

isgraph() function, 382

islower() function, 382

ISO standard, 6-7

isprint() function, 382

ispunct() function, 382

isspace() function, 115, 382

isupper() function, 382

isxdigit() function, 382

ireration. See looping

-J-

imP_bufvariable,391

jumps
nonlocal,391-93

justification
in printf() function, 407

-K-
K&R standard, 5

487

differences from ANSI standard, 452-
61

Kanji clrracrer set, 63

Kernighan, Brian, 5, 19,45

keywords, 36, 42
reserved, 41

Knuth, Donald E., 368

-L-
labels

case, 102
goto,217
starement, 121

Iabs() function, 431

LC_ALL macro, 383

LC_COLLATE macro, 383

LCCfYPE macro, 383

www.manaraa.com

488 Index

LC_MONETARY macro, 383 loader, 33, 35

LC_NUMERIC macro, 383 local variables, 213

LC31ME macro, 383 locale parameters

lconv structure, 383 nmtime library, 383-84

LDBL_DIG macro, 451 locaJe.h header file, 378, 383

LDBL_EPSILON macro, 450 loazleconv() function, 384

LDBL_MAX macro, 450 Iocaltime() function, 443

LDBL_MIN macro, 450 log() function, 389

ldexp() function, 388 Iog10() function, 389

/div() function, 432 logarithmic functions

/div _t structure, 423
nmtime library, 388

leaves, 130
logical AND operator &&, 146

left brace
logical bitwise operators, 152-57

trigraph sequence, 69 logical negation operator !, 146

left bracket, 69 logical operators, 146-49

left-shift-assign operator «=, 157
truth table for, 147

left shift operator «, 150
logical OR operator 11,146

less than operator <,96,145
logical shift, 152

less than or equal to operator <=, 96, 145
long double constants, 71

lexical analysis, 40, 452
long double type specifier, 69

library. See nmtime library
long int data type, 61

limits
LONG_MAX macro, 449

implementation, 447-51 LONG_MIN macro, 449

nwnerical, 448 Iongjmp() function, 392
translation, 447 looping, 107-16

limits.h header file, 70, 378 loops
#line directive, 321 infinite, 122-25

line buffering, 330 nested, 116-18

line control, 321 Ivalue,43

Iinked lists, 256-62
adding elements, 258-59 -M-
creating elements, 257-58
deleting elements, 260-61 machine language, 1, 2
doubly, 256
finding elements, 261 macro arguments, 308

inserting elements, 259-60 macro body, 305

1inker,33,34 macro definition

linking removing, 310

in UNIX environment, 34 macro expansion, 305

linking object files, 34 macro names, 305

lint utility, 369 macros, 304-15

USP programming language, 295 syntax of, 306

www.manaraa.com

Index 489

advantages of, 311 memory allocation
built-in, 312 dynamic, 231-35
disadvantages of, 312 for strings, 182
recursive, 310 of array elements, 167
string producer, 313 of array parameters, 177
testing existence of, 319 of automatic variables, 213
token pasting, 315 of enurns, 83
vs. £unctions, 311, 379 of integers, 60

mailbox analogy for computer memory, memory management £unctions
39 runtime library, 426-28

main() £unction, 46-50, 46-50 memory operators, 161-63

maintainability, 4 memset() £unction, 433
and formatting, 201 merge sort algorithm, 291
and intermodule dependencies, 15

milestones, 363, 364 and performance, 221
and relational expressions, 149 minus operator, 73

avoiding gloabl variables, 221 mktime() £unction, 444
avoiding intermodule dependencies, modfO £unction, 390

362
changing parameter values, 242 modules, 15, 361

division into subsystems, 15 modulus operator. See remainder
limiting scope, 219 operator
naming conventions, 41 most significant bit, 61
using macros, 306 multibyte character £unctions, 439-41

maintenance, 28-29 multibyte characters, 65
make utility, 369, 371 multidimensional arrays, 194-201
makefiles,371 initializing, 197-98
malloc() £unction, 232, 427 passing as £unction arguments, 199-

mantissa, 71 200

masking, 154
referencing elements, 199

math.h header file, 378, 387
multiple assignments, 137

mathematics £unctions
multiplicative operators, 133

runtime library, 385-91

MB_CUR_MAX macro, 423 -N-
mblen() £unction, 439

mbstowcs() £unction, 440 \n
newline, 68

mbtowc() £unction, 440
naked array name, 176

members. See structure members

memchr() £unction, 432
name spaces

structure, 244
memcmp() £unction, 432 union, 244

memcpy() £unction, 433 names,~2

memmove() £unction, 433 array, 167
choosing, 42

memory legal and illegal, 41
mailbox analogy, 39 length of, 41

www.manaraa.com

490 Index

reserved, 463 offsetof macro, 247,269

naming conventions, 41 omitted-extern strategy, 224

natural alignment, 246 operands, 73

NDEBUG macro, 380 operating systems, 5

negative numbers operators, 126-63
representation of, 61 additive, 133

nested comments, 48 address of &, 52,161

nested if statements, 99
assignment, 136-39
associativity of, 128-32

nested loops, 116-18 binary,73,97
nested structures, 244 bit manipulation, 150-57

newline bitwise

escape character sequence \n, 68 logical, 152-57
comparison, 96

newline character, 49 decrement, 142-43
newlines, 44 precedence of, 142

ending preprocessor directives, 53 increment, 142-43
escape sequence precedence of, 142

\n,51 logical, 146-49

~syndrome, 19 logical bitwise, 152-57

node,13O
memory, 161-63
multiplicative, 133

nonlocal jumps postfix, 139
runtime library, 391-93 precedence of, 128-32

not equal to operator !=, 96, 145 prefix, 140

not invented here (~) syndrome, 19 shift, 151-52
sizeof,158-59

NOT operator unary, 73, 132-33
logical !, 146

optimizations. See also efficiency
NP-complete problems, 375 performed by compiler, 228, 229
NULL,331 strength reduction, 241

null character, 182 OR-assign operator 1=, 157

NULL macro, 378, 380 OR operator

null pointer, 172-73, 172, 331 bitwise exclusive", 150

null statements, 115-16
bitwise inclusive I, 150
logical II, 146

numerical limits, 448 order of evaluation, 130, 131-32

output. See JlO

---0- overflow
floating-point, 387

object code, 33 integer, 76

object files overflows, 78
linking, 34

objects, 368
-p-

octal constants, 65

off-by-<>ne errors, 114 padding

www.manaraa.com

Index

in printf{) function, 51

parameters. See arguments

parenth~, 128-30

parsing, 40

pass by reference, 252

pass by value, 252

passing arguments, 270-72

pattern matching, 190-93

PCC (Portable C Compiler), 6

PDL. See pseudocode

performance analysis, 28

perror{) function, 406

planning software projects, 17

Plauger, P. J., 19,45

plus operator +, 132

pointer arithmetic, 171-73

pointer expressions, 127

pointer subttaction, 171-72

pointers, 164-211
arithmetic, 171-73
arrays of, 202-5
dereferencing, 87-89
generic, 233
initializing, 89
introduction to, 86-90
null, 172-73, 172
passing as function argument, 173--74
to functions, 284-93

assigning values to, 285
invoking, 286

to pointers, 205-11
to strings, 204
using to access array elements, 174-76

popping
off a stack, 269

portability, 3
accessing the file position indicator,

328
and bit fields, 248, 250
andIlO,326
and integer division, 137
and structure allocation, 246
and variable argument lists, 395
declaring global variables, 225

491

dereferencing pointers to functions,
287

using sizeo~ 180,348
variable addresses, 86

postfix operators, 139

pound sign #, 69

pow{) function, 390

#pragma directive, 323

precedence
of decrement operators, 142
of increment operators, 142
of operators, 128-32

precision, 69
loss of, 77

precision specifier
in printf{) function, 412

prefix operators, 140

preprocessor, 52-54, 304

printf{) function, 50, 407-13

private types, 368

procedure, 35

product specification, 12-13, 357-61

profiling, 28

program design language, 24

program development, 31-35

program execution
terminating, 47

program maintenance, 28-29

program scope, 217, 220-21

programming languages
high-level, 2, 3
systems,S

programming style, 356

programming tools, 19

project planning, 17-21,362-64

Prolog programming language, 295

prototypes, 37, 272, 278-82
syntax, 281
variable argument lists, 283

pseudocode, 24

pushing
onto a stack, 269

www.manaraa.com

492

putc() function, 336, 413

putchar() function, 413

puts() function, 414

-Q-

qsort() function, 430

qualifiers. See data type qualifiers

quicksort algorithm, 291

quiet conversions. See automatic
conversions

quotes
double, 320

printing, 68
single

printing, 68

quotient
div() function, 431

-R-
\r

carriage return, 68

raiseO function, 395

rand() function, 426

RAND _MAX macro, 423

random access JlO, 344-53

random numbers
pseudo

runtime library, 426

range errors, 387

readability, viii, 3, 28
and efficiency, 190
and formatting, 44, 201
choosing function names, 275
declaring functions, 60
formatting comments, 45
limiting scope, 219
nested structures, 243
using arithmetic assignment operators,

138
using parentheses, 129
using switch statements, 101

reading data, 335-40

reading strings, 186-87

real/ocO function, 232, 427

record,236
variant, 236

recursion, 293
of macros, 460

redundancy
eliminating, 22
needless, 22

Index

register storage class, 225-26, 230, 276

relational expressions
side effects, 150

relational operators. See comparison
operators

remainder
of integer division, 137

remainder operator %, 134-42

removeO function, 414

rename() function, 414

reserved keywords, 36, 41, 42
Clean C, 42

reserved names, 463

return statement, 254, 277, 278

return type

of function, 275

return values, 277
in recursive calls, 294
type agreement, 286

rewindO function, 414

right-arrow operator ->, 161

right brace
trigraph sequence, 69

right bracket
trigraph sequence, 69

right-shift-assign operator »=,157

right shift operator », 150

Ritchie, Dennis M., 5

ROMs,227

rounding
of floating-point numbers, 73, 413

runtime errors, 78
running out of stack memory, 294

www.manaraa.com

Index 493

runtime library, 35, 376-446 program, 217, 220-21
character handling, 381-82 searching and sorting funtions, 430-31
date and time functions, 441-46

SEEK_CUR macro, 344
diagnostics, 380-81
environment functions, 428-30 SEEK_END macro, 344
error handling, 380 SEEK_SET macro, 344
function names, 377 segment violation signal
general utilities, 422-32 SIGSEGV macro, 394
header files, 377
header filese self-referencing structures, 244-45

list of, 378 semicolon;
JlO functions, 397-422 misplaced, 95
integer arithmetic functions, 431-32 mistakenly used to end macro
mathematics functions, 385-91 definition, 307
memory management functions, 42~ setbuf() function, 343,419

28
setjmp() function, 392

multibyte functions, 439-41
nonlocal jumps, 391-93 setjmp.h header file, 378, 391

random number generation, 426 setlocale() function, 384
searching and sorting functions, 430- setvbuf() function, 343,419

31
setting locale parameters, 383-84 shift

signal handling, 393-95 arithmetic, 152

string conversion functions, 423-26 logical, 152

string handling functions, 432-39 shift operators, 151-52
synopses, 377-79 Shore, John, 10
variable argument lists, 395-97 short-circuit evaluation, 150

rvalue,43 short int data type, 61

short type specifier, 58

-S- SHRT_MAX macro, 449

scalar data types, 57-91
SHRLMIN macro, 449

hierarchy of, 74 side effects

keywords, 59 in expressions, 141

scaling
in macro arguements, 311

in pointer arithmetic, 171
in relational expressions, 150

turning off with a cast, 196 SIG_DFL macro, 394

scanfO function, 49, 52, 415-18 SIG_ERR macro, 394

SCHAR_MAX macro, 449 SIGjGN macro, 394

SCHAR_MIN macro, 449 SIGABRTmacro, 394

scientific notation, 70-71 SIGFPE macro, 394

scope, 217-21 SIGILL macro, 394

block, 217, 219-20 SIGINT macro, 394
definition, 212 sign bit, 61
file, 217, 220-21 sign extension, 75
function, 217, 220
hierarchy, 218 signal handling

www.manaraa.com

494 Index

nlntiunelibnuy,393-95 fonnatting, 44-46

signal{) function, 393 source management, 19, 370

signal.h header file, 378, 393 sprintf{) function, 420

signed integers, 63 sqrt{) function, 390

signed type specifier, 58, 63 srand{) function, 426

sign-preserving conversions, 77 sscanf() function, 420

SIGSEGV macro, 394 stack, 269

SIGTERM macro, 394 stack memory

sin{) function, 389 rurming out of, 294

single quote standard streamS, 328

printing, 68 statement label, 121

single quotes, 64 statements

sinh{) function, 389 compound, 98-99

siztU macro, 247 static storage class specifier, 168,213,

~_ttype,339,423
217,220,221,230,281
dual meaning o~ 222

sizeof operator, 158-59, 167, 348 stdarg.h header file, 378, 395
using for portability, 180

smallest integer
stddef.h header file, 247, 378

ceil() function, 390 stderr,328

software, 1 stdin, 328

software engineering stdin macro, 115

architectural design, 361-62 stdio.h header file, 48,330-32,378
case study, 355-75 stdlib.h header file, 47, 378,422
debugging, 372

stdout,328 detailed design, 365-69
documentation, 372-73 stepwise refinement, 21, 22-23, 361

infonnation hiding, 368 storage class specifiers
inttoductionto,9-30 semantics, 230
product specification, 357-61 storage classes, 212-35
software tools, 369-72 summary, 229-31
source management, 370

mr.llghtlinep~,92
software engineeriong

project planning, 362-64 strcat() function, 433

software production, 10 strchr() function, 434

software tools, 369-72 stronp() function, 434

sort routine strcoll{) function, 434

generalized, 287 strcpy() function, 189,435

sorting algorithms, 179,291 strcspn() function, 435
bubble sort. 179 streams, 327-29

sorting functions standard, 328
nlntime libnuy, 430-31 strength reduction, 209, 241

source files strerror() function, 435
compiling, 33 string constant, 182

www.manaraa.com

Index

string conversion functions
runtinae libnuy, 423-26

string functions, 195

string handling functions, 432-39

string literal. See string constant

string producer macro, 313

string.h header file, 378

strings, 181-93
arrays of pointers to, 204
assigning, 183-85
concatenating, 188
copying, 189-90
declaring, 182-83
initializing, 182-83
length of, 187-88
reading, 186-87
standard functions, 195
storage, 183,233
vs. chars, 185-86
writing, 186-87

strlen() function, 187,435

strncat() function, 435

strncmp() function, 436

strncpy() function, 436

strpbrk() function, 436

strrchr() function, 437

strspn() function, 437

strstr() function, 190,437

strtod() function, 424

strtok() function, 437

strtolO function, 425

strtoul() function, 425

strttime() function, 444

steuct keyword, 239

structure members, 237
alignment, 245-47
referencing, 240

structure template, 237

structures, 236-55
alignment

natural, 246
arrays of, 241-42
assigning, 255
holes in, 245

intializing, 239-40
name spaces, 244
nested, 244

495

passing as function arguments, 252-53
returning, 253-55
self-referencing, 244-45
storage, 238

strx{rm() function, 438

stubs, 277

subexpressions, 73

subroutine, 35

subscript, 164

subsystems, 14

subtraction
pointer, 171-72

switch statement, 100
syntax, 101-7

symbol tables, 365

synopses
runtinae library, 377-79

system commands
executing

systemO function, 429

system() function, 429

systems programming languages, 5

-T-
tabs

horizontal
escape character sequence \t, 68

vertical
escape character sequence \v, 68

tag name, 238

tan() function, 389

tanh() function, 389

T annenbaurn, A., 15

template
structure, 237

temponuy files
tmpfi/e() function, 421
tmpnam() function, 352

tentative definitions, 223

www.manaraa.com

496 Index

tennination signal long double, 69
SIGTERM macro, 394 void, 83-84

test engineering, 27 typedef name, 239

test suites, 27 typedefs,84-85

testing, 27-28 confusing with #define, 83

text fonnat, 328

text stream, 328 -u-
text stream modes, 332

Thompson, Ken, 5 UCHAR_MAX macro, 449

tilde
UINT_MAX macro, 449

trigraph sequence, 69 llliman,368

time functions, 441-46 ULONG_MAX macro, 449

time() function, 446 unary arithmetic operators, 132-33

time.h header file, 378, 441 unary minus operator -, 132-33

time_t type, 442 unary operators, 73

tm structure, 442 unary plus operator +, 132-33

TMP _MAX macro, 421 unbuffered I/O, 343

tmpfile() function, 420 undefined values, 167

tmpnam() function, 421 underflow errors, 387

token pasting, 315 underscore character -' 41

tokens
names beginning with, 462

dividing a string into, 437 ungetc() function, 115,421

tolowerO function, 382 wUons, 262-67

tools
initializing, 265-66

software, 369-72
name spaces, 244

topdown design, 21-23
storage, 263

UNIX operating system, 5
toupperO function, 382 compiling and linking, 34
translation limits, 447 unnamed bit fields, 248
traveling salesman problem, 374 unsigned constants, 67
tree structure, 130 unsigned conversions, 76-77
trees unsigned data type qualifier, 63

binary,365

trigonometric functions
unsigned integers, 62

runtime library, 387
update modes, 400

trigraph sequences, 68
user interface, 14

truth tables, 147
USHRT_MAX macro, 449

two's complement notation, 61

type specifiers -v-
double, 69
enum, 81-83 \v
float, 69 vertical tab, 68

www.manaraa.com

Index 497

va_arg macro, 396 wcstombs() function, 441

va_end() function, 396 wctomb() function, 440

va_start macro, 396 while statement, 107-9

variable argument lists, 283 syntax, 107

runtime library, 395-97 Wirth, Niklaus, 361

variables, 39-40 writing data, 335-40
global, 221-24 writing strings, 186-87

declaring, 224

variant records, 236, 266-67

version skew, 21 -x-
vertical tab X3Jll Technical Committee, 6

escape character sequence \v, 68

vfprintf() function, 422
XOR operator A, 150

void data type, 57, 83-84, 233
XOR-assign operator A=, 157

void type, 275

volatile specifier, 231 -y-
volatile storage-<:Iass modifier, 228-29

yacc utility, 322
vprintf() function, 422

vsprintf() function, 422

-z-
-w- zero

representation of, 62
wchao type, 423

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

